![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > 3brtr3g | GIF version |
Description: Substitution of equality into both sides of a binary relation. (Contributed by NM, 16-Jan-1997.) |
Ref | Expression |
---|---|
3brtr3g.1 | ⊢ (𝜑 → 𝐴𝑅𝐵) |
3brtr3g.2 | ⊢ 𝐴 = 𝐶 |
3brtr3g.3 | ⊢ 𝐵 = 𝐷 |
Ref | Expression |
---|---|
3brtr3g | ⊢ (𝜑 → 𝐶𝑅𝐷) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 3brtr3g.1 | . 2 ⊢ (𝜑 → 𝐴𝑅𝐵) | |
2 | 3brtr3g.2 | . . 3 ⊢ 𝐴 = 𝐶 | |
3 | 3brtr3g.3 | . . 3 ⊢ 𝐵 = 𝐷 | |
4 | 2, 3 | breq12i 3876 | . 2 ⊢ (𝐴𝑅𝐵 ↔ 𝐶𝑅𝐷) |
5 | 1, 4 | sylib 121 | 1 ⊢ (𝜑 → 𝐶𝑅𝐷) |
Colors of variables: wff set class |
Syntax hints: → wi 4 = wceq 1296 class class class wbr 3867 |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 668 ax-5 1388 ax-7 1389 ax-gen 1390 ax-ie1 1434 ax-ie2 1435 ax-8 1447 ax-10 1448 ax-11 1449 ax-i12 1450 ax-bndl 1451 ax-4 1452 ax-17 1471 ax-i9 1475 ax-ial 1479 ax-i5r 1480 ax-ext 2077 |
This theorem depends on definitions: df-bi 116 df-3an 929 df-tru 1299 df-nf 1402 df-sb 1700 df-clab 2082 df-cleq 2088 df-clel 2091 df-nfc 2224 df-v 2635 df-un 3017 df-sn 3472 df-pr 3473 df-op 3475 df-br 3868 |
This theorem is referenced by: syl5eqbrr 3901 syl6breq 3906 ssenen 6647 ege2le3 11126 |
Copyright terms: Public domain | W3C validator |