ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  3brtr3g GIF version

Theorem 3brtr3g 3898
Description: Substitution of equality into both sides of a binary relation. (Contributed by NM, 16-Jan-1997.)
Hypotheses
Ref Expression
3brtr3g.1 (𝜑𝐴𝑅𝐵)
3brtr3g.2 𝐴 = 𝐶
3brtr3g.3 𝐵 = 𝐷
Assertion
Ref Expression
3brtr3g (𝜑𝐶𝑅𝐷)

Proof of Theorem 3brtr3g
StepHypRef Expression
1 3brtr3g.1 . 2 (𝜑𝐴𝑅𝐵)
2 3brtr3g.2 . . 3 𝐴 = 𝐶
3 3brtr3g.3 . . 3 𝐵 = 𝐷
42, 3breq12i 3876 . 2 (𝐴𝑅𝐵𝐶𝑅𝐷)
51, 4sylib 121 1 (𝜑𝐶𝑅𝐷)
Colors of variables: wff set class
Syntax hints:  wi 4   = wceq 1296   class class class wbr 3867
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 668  ax-5 1388  ax-7 1389  ax-gen 1390  ax-ie1 1434  ax-ie2 1435  ax-8 1447  ax-10 1448  ax-11 1449  ax-i12 1450  ax-bndl 1451  ax-4 1452  ax-17 1471  ax-i9 1475  ax-ial 1479  ax-i5r 1480  ax-ext 2077
This theorem depends on definitions:  df-bi 116  df-3an 929  df-tru 1299  df-nf 1402  df-sb 1700  df-clab 2082  df-cleq 2088  df-clel 2091  df-nfc 2224  df-v 2635  df-un 3017  df-sn 3472  df-pr 3473  df-op 3475  df-br 3868
This theorem is referenced by:  syl5eqbrr  3901  syl6breq  3906  ssenen  6647  ege2le3  11126
  Copyright terms: Public domain W3C validator