| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > 3brtr4d | Unicode version | ||
| Description: Substitution of equality into both sides of a binary relation. (Contributed by NM, 21-Feb-2005.) |
| Ref | Expression |
|---|---|
| 3brtr4d.1 |
|
| 3brtr4d.2 |
|
| 3brtr4d.3 |
|
| Ref | Expression |
|---|---|
| 3brtr4d |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 3brtr4d.1 |
. 2
| |
| 2 | 3brtr4d.2 |
. . 3
| |
| 3 | 3brtr4d.3 |
. . 3
| |
| 4 | 2, 3 | breq12d 4096 |
. 2
|
| 5 | 1, 4 | mpbird 167 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-ext 2211 |
| This theorem depends on definitions: df-bi 117 df-3an 1004 df-tru 1398 df-nf 1507 df-sb 1809 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-v 2801 df-un 3201 df-sn 3672 df-pr 3673 df-op 3675 df-br 4084 |
| This theorem is referenced by: f1oiso2 5951 prarloclemarch2 7606 caucvgprprlemmu 7882 caucvgsrlembound 7981 mulap0 8801 lediv12a 9041 recp1lt1 9046 xleadd1a 10069 fldiv4p1lem1div2 10525 fldiv4lem1div2 10527 intfracq 10542 modqmulnn 10564 addmodlteq 10620 frecfzennn 10648 monoord2 10708 expgt1 10799 leexp2r 10815 leexp1a 10816 bernneq 10882 faclbnd 10963 faclbnd6 10966 facubnd 10967 hashunlem 11026 zfz1isolemiso 11061 sqrtgt0 11545 absrele 11594 absimle 11595 abstri 11615 abs2difabs 11619 bdtrilem 11750 bdtri 11751 xrmaxifle 11757 xrmaxadd 11772 xrbdtri 11787 climsqz 11846 climsqz2 11847 fsum3cvg2 11905 isumle 12006 expcnvap0 12013 expcnvre 12014 explecnv 12016 cvgratz 12043 efcllemp 12169 ege2le3 12182 eflegeo 12212 cos12dec 12279 fsumdvds 12353 phibnd 12739 pcdvdstr 12850 pcprmpw2 12856 pockthg 12880 2expltfac 12962 znrrg 14624 psmetres2 15007 xmetres2 15053 comet 15173 bdxmet 15175 cnmet 15204 ivthdec 15318 limcimolemlt 15338 tangtx 15512 logbgcd1irraplemap 15643 2lgslem1c 15769 cvgcmp2nlemabs 16400 trilpolemlt1 16409 |
| Copyright terms: Public domain | W3C validator |