| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > 3brtr4d | Unicode version | ||
| Description: Substitution of equality into both sides of a binary relation. (Contributed by NM, 21-Feb-2005.) |
| Ref | Expression |
|---|---|
| 3brtr4d.1 |
|
| 3brtr4d.2 |
|
| 3brtr4d.3 |
|
| Ref | Expression |
|---|---|
| 3brtr4d |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 3brtr4d.1 |
. 2
| |
| 2 | 3brtr4d.2 |
. . 3
| |
| 3 | 3brtr4d.3 |
. . 3
| |
| 4 | 2, 3 | breq12d 4047 |
. 2
|
| 5 | 1, 4 | mpbird 167 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-ext 2178 |
| This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-nf 1475 df-sb 1777 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-v 2765 df-un 3161 df-sn 3629 df-pr 3630 df-op 3632 df-br 4035 |
| This theorem is referenced by: f1oiso2 5877 prarloclemarch2 7503 caucvgprprlemmu 7779 caucvgsrlembound 7878 mulap0 8698 lediv12a 8938 recp1lt1 8943 xleadd1a 9965 fldiv4p1lem1div2 10412 fldiv4lem1div2 10414 intfracq 10429 modqmulnn 10451 addmodlteq 10507 frecfzennn 10535 monoord2 10595 expgt1 10686 leexp2r 10702 leexp1a 10703 bernneq 10769 faclbnd 10850 faclbnd6 10853 facubnd 10854 hashunlem 10913 zfz1isolemiso 10948 sqrtgt0 11216 absrele 11265 absimle 11266 abstri 11286 abs2difabs 11290 bdtrilem 11421 bdtri 11422 xrmaxifle 11428 xrmaxadd 11443 xrbdtri 11458 climsqz 11517 climsqz2 11518 fsum3cvg2 11576 isumle 11677 expcnvap0 11684 expcnvre 11685 explecnv 11687 cvgratz 11714 efcllemp 11840 ege2le3 11853 eflegeo 11883 cos12dec 11950 fsumdvds 12024 phibnd 12410 pcdvdstr 12521 pcprmpw2 12527 pockthg 12551 2expltfac 12633 znrrg 14292 psmetres2 14653 xmetres2 14699 comet 14819 bdxmet 14821 cnmet 14850 ivthdec 14964 limcimolemlt 14984 tangtx 15158 logbgcd1irraplemap 15289 2lgslem1c 15415 cvgcmp2nlemabs 15763 trilpolemlt1 15772 |
| Copyright terms: Public domain | W3C validator |