| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > 3brtr4d | Unicode version | ||
| Description: Substitution of equality into both sides of a binary relation. (Contributed by NM, 21-Feb-2005.) |
| Ref | Expression |
|---|---|
| 3brtr4d.1 |
|
| 3brtr4d.2 |
|
| 3brtr4d.3 |
|
| Ref | Expression |
|---|---|
| 3brtr4d |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 3brtr4d.1 |
. 2
| |
| 2 | 3brtr4d.2 |
. . 3
| |
| 3 | 3brtr4d.3 |
. . 3
| |
| 4 | 2, 3 | breq12d 4057 |
. 2
|
| 5 | 1, 4 | mpbird 167 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 711 ax-5 1470 ax-7 1471 ax-gen 1472 ax-ie1 1516 ax-ie2 1517 ax-8 1527 ax-10 1528 ax-11 1529 ax-i12 1530 ax-bndl 1532 ax-4 1533 ax-17 1549 ax-i9 1553 ax-ial 1557 ax-i5r 1558 ax-ext 2187 |
| This theorem depends on definitions: df-bi 117 df-3an 983 df-tru 1376 df-nf 1484 df-sb 1786 df-clab 2192 df-cleq 2198 df-clel 2201 df-nfc 2337 df-v 2774 df-un 3170 df-sn 3639 df-pr 3640 df-op 3642 df-br 4045 |
| This theorem is referenced by: f1oiso2 5896 prarloclemarch2 7532 caucvgprprlemmu 7808 caucvgsrlembound 7907 mulap0 8727 lediv12a 8967 recp1lt1 8972 xleadd1a 9995 fldiv4p1lem1div2 10448 fldiv4lem1div2 10450 intfracq 10465 modqmulnn 10487 addmodlteq 10543 frecfzennn 10571 monoord2 10631 expgt1 10722 leexp2r 10738 leexp1a 10739 bernneq 10805 faclbnd 10886 faclbnd6 10889 facubnd 10890 hashunlem 10949 zfz1isolemiso 10984 sqrtgt0 11345 absrele 11394 absimle 11395 abstri 11415 abs2difabs 11419 bdtrilem 11550 bdtri 11551 xrmaxifle 11557 xrmaxadd 11572 xrbdtri 11587 climsqz 11646 climsqz2 11647 fsum3cvg2 11705 isumle 11806 expcnvap0 11813 expcnvre 11814 explecnv 11816 cvgratz 11843 efcllemp 11969 ege2le3 11982 eflegeo 12012 cos12dec 12079 fsumdvds 12153 phibnd 12539 pcdvdstr 12650 pcprmpw2 12656 pockthg 12680 2expltfac 12762 znrrg 14422 psmetres2 14805 xmetres2 14851 comet 14971 bdxmet 14973 cnmet 15002 ivthdec 15116 limcimolemlt 15136 tangtx 15310 logbgcd1irraplemap 15441 2lgslem1c 15567 cvgcmp2nlemabs 15971 trilpolemlt1 15980 |
| Copyright terms: Public domain | W3C validator |