| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > 3brtr4d | Unicode version | ||
| Description: Substitution of equality into both sides of a binary relation. (Contributed by NM, 21-Feb-2005.) |
| Ref | Expression |
|---|---|
| 3brtr4d.1 |
|
| 3brtr4d.2 |
|
| 3brtr4d.3 |
|
| Ref | Expression |
|---|---|
| 3brtr4d |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 3brtr4d.1 |
. 2
| |
| 2 | 3brtr4d.2 |
. . 3
| |
| 3 | 3brtr4d.3 |
. . 3
| |
| 4 | 2, 3 | breq12d 4058 |
. 2
|
| 5 | 1, 4 | mpbird 167 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 711 ax-5 1470 ax-7 1471 ax-gen 1472 ax-ie1 1516 ax-ie2 1517 ax-8 1527 ax-10 1528 ax-11 1529 ax-i12 1530 ax-bndl 1532 ax-4 1533 ax-17 1549 ax-i9 1553 ax-ial 1557 ax-i5r 1558 ax-ext 2187 |
| This theorem depends on definitions: df-bi 117 df-3an 983 df-tru 1376 df-nf 1484 df-sb 1786 df-clab 2192 df-cleq 2198 df-clel 2201 df-nfc 2337 df-v 2774 df-un 3170 df-sn 3639 df-pr 3640 df-op 3642 df-br 4046 |
| This theorem is referenced by: f1oiso2 5898 prarloclemarch2 7534 caucvgprprlemmu 7810 caucvgsrlembound 7909 mulap0 8729 lediv12a 8969 recp1lt1 8974 xleadd1a 9997 fldiv4p1lem1div2 10450 fldiv4lem1div2 10452 intfracq 10467 modqmulnn 10489 addmodlteq 10545 frecfzennn 10573 monoord2 10633 expgt1 10724 leexp2r 10740 leexp1a 10741 bernneq 10807 faclbnd 10888 faclbnd6 10891 facubnd 10892 hashunlem 10951 zfz1isolemiso 10986 sqrtgt0 11378 absrele 11427 absimle 11428 abstri 11448 abs2difabs 11452 bdtrilem 11583 bdtri 11584 xrmaxifle 11590 xrmaxadd 11605 xrbdtri 11620 climsqz 11679 climsqz2 11680 fsum3cvg2 11738 isumle 11839 expcnvap0 11846 expcnvre 11847 explecnv 11849 cvgratz 11876 efcllemp 12002 ege2le3 12015 eflegeo 12045 cos12dec 12112 fsumdvds 12186 phibnd 12572 pcdvdstr 12683 pcprmpw2 12689 pockthg 12713 2expltfac 12795 znrrg 14455 psmetres2 14838 xmetres2 14884 comet 15004 bdxmet 15006 cnmet 15035 ivthdec 15149 limcimolemlt 15169 tangtx 15343 logbgcd1irraplemap 15474 2lgslem1c 15600 cvgcmp2nlemabs 16008 trilpolemlt1 16017 |
| Copyright terms: Public domain | W3C validator |