| Intuitionistic Logic Explorer | 
      
      
      < Previous  
      Next >
      
       Nearby theorems  | 
  ||
| Mirrors > Home > ILE Home > Th. List > 3brtr4d | Unicode version | ||
| Description: Substitution of equality into both sides of a binary relation. (Contributed by NM, 21-Feb-2005.) | 
| Ref | Expression | 
|---|---|
| 3brtr4d.1 | 
 | 
| 3brtr4d.2 | 
 | 
| 3brtr4d.3 | 
 | 
| Ref | Expression | 
|---|---|
| 3brtr4d | 
 | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | 3brtr4d.1 | 
. 2
 | |
| 2 | 3brtr4d.2 | 
. . 3
 | |
| 3 | 3brtr4d.3 | 
. . 3
 | |
| 4 | 2, 3 | breq12d 4046 | 
. 2
 | 
| 5 | 1, 4 | mpbird 167 | 
1
 | 
| Colors of variables: wff set class | 
| Syntax hints:     | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-ext 2178 | 
| This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-nf 1475 df-sb 1777 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-v 2765 df-un 3161 df-sn 3628 df-pr 3629 df-op 3631 df-br 4034 | 
| This theorem is referenced by: f1oiso2 5874 prarloclemarch2 7486 caucvgprprlemmu 7762 caucvgsrlembound 7861 mulap0 8681 lediv12a 8921 recp1lt1 8926 xleadd1a 9948 fldiv4p1lem1div2 10395 fldiv4lem1div2 10397 intfracq 10412 modqmulnn 10434 addmodlteq 10490 frecfzennn 10518 monoord2 10578 expgt1 10669 leexp2r 10685 leexp1a 10686 bernneq 10752 faclbnd 10833 faclbnd6 10836 facubnd 10837 hashunlem 10896 zfz1isolemiso 10931 sqrtgt0 11199 absrele 11248 absimle 11249 abstri 11269 abs2difabs 11273 bdtrilem 11404 bdtri 11405 xrmaxifle 11411 xrmaxadd 11426 xrbdtri 11441 climsqz 11500 climsqz2 11501 fsum3cvg2 11559 isumle 11660 expcnvap0 11667 expcnvre 11668 explecnv 11670 cvgratz 11697 efcllemp 11823 ege2le3 11836 eflegeo 11866 cos12dec 11933 fsumdvds 12007 phibnd 12385 pcdvdstr 12496 pcprmpw2 12502 pockthg 12526 2expltfac 12608 znrrg 14216 psmetres2 14569 xmetres2 14615 comet 14735 bdxmet 14737 cnmet 14766 ivthdec 14880 limcimolemlt 14900 tangtx 15074 logbgcd1irraplemap 15205 2lgslem1c 15331 cvgcmp2nlemabs 15676 trilpolemlt1 15685 | 
| Copyright terms: Public domain | W3C validator |