| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > 3brtr4d | Unicode version | ||
| Description: Substitution of equality into both sides of a binary relation. (Contributed by NM, 21-Feb-2005.) |
| Ref | Expression |
|---|---|
| 3brtr4d.1 |
|
| 3brtr4d.2 |
|
| 3brtr4d.3 |
|
| Ref | Expression |
|---|---|
| 3brtr4d |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 3brtr4d.1 |
. 2
| |
| 2 | 3brtr4d.2 |
. . 3
| |
| 3 | 3brtr4d.3 |
. . 3
| |
| 4 | 2, 3 | breq12d 4072 |
. 2
|
| 5 | 1, 4 | mpbird 167 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-ext 2189 |
| This theorem depends on definitions: df-bi 117 df-3an 983 df-tru 1376 df-nf 1485 df-sb 1787 df-clab 2194 df-cleq 2200 df-clel 2203 df-nfc 2339 df-v 2778 df-un 3178 df-sn 3649 df-pr 3650 df-op 3652 df-br 4060 |
| This theorem is referenced by: f1oiso2 5919 prarloclemarch2 7567 caucvgprprlemmu 7843 caucvgsrlembound 7942 mulap0 8762 lediv12a 9002 recp1lt1 9007 xleadd1a 10030 fldiv4p1lem1div2 10485 fldiv4lem1div2 10487 intfracq 10502 modqmulnn 10524 addmodlteq 10580 frecfzennn 10608 monoord2 10668 expgt1 10759 leexp2r 10775 leexp1a 10776 bernneq 10842 faclbnd 10923 faclbnd6 10926 facubnd 10927 hashunlem 10986 zfz1isolemiso 11021 sqrtgt0 11460 absrele 11509 absimle 11510 abstri 11530 abs2difabs 11534 bdtrilem 11665 bdtri 11666 xrmaxifle 11672 xrmaxadd 11687 xrbdtri 11702 climsqz 11761 climsqz2 11762 fsum3cvg2 11820 isumle 11921 expcnvap0 11928 expcnvre 11929 explecnv 11931 cvgratz 11958 efcllemp 12084 ege2le3 12097 eflegeo 12127 cos12dec 12194 fsumdvds 12268 phibnd 12654 pcdvdstr 12765 pcprmpw2 12771 pockthg 12795 2expltfac 12877 znrrg 14537 psmetres2 14920 xmetres2 14966 comet 15086 bdxmet 15088 cnmet 15117 ivthdec 15231 limcimolemlt 15251 tangtx 15425 logbgcd1irraplemap 15556 2lgslem1c 15682 cvgcmp2nlemabs 16173 trilpolemlt1 16182 |
| Copyright terms: Public domain | W3C validator |