ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  halfnqq Unicode version

Theorem halfnqq 7230
Description: One-half of any positive fraction is a fraction. (Contributed by Jim Kingdon, 23-Sep-2019.)
Assertion
Ref Expression
halfnqq  |-  ( A  e.  Q.  ->  E. x  e.  Q.  ( x  +Q  x )  =  A )
Distinct variable group:    x, A

Proof of Theorem halfnqq
StepHypRef Expression
1 1nq 7186 . . . . . . . . 9  |-  1Q  e.  Q.
2 addclnq 7195 . . . . . . . . 9  |-  ( ( 1Q  e.  Q.  /\  1Q  e.  Q. )  -> 
( 1Q  +Q  1Q )  e.  Q. )
31, 1, 2mp2an 422 . . . . . . . 8  |-  ( 1Q 
+Q  1Q )  e. 
Q.
4 recclnq 7212 . . . . . . . . 9  |-  ( ( 1Q  +Q  1Q )  e.  Q.  ->  ( *Q `  ( 1Q  +Q  1Q ) )  e.  Q. )
53, 4ax-mp 5 . . . . . . . 8  |-  ( *Q
`  ( 1Q  +Q  1Q ) )  e.  Q.
6 distrnqg 7207 . . . . . . . 8  |-  ( ( ( 1Q  +Q  1Q )  e.  Q.  /\  ( *Q `  ( 1Q  +Q  1Q ) )  e.  Q.  /\  ( *Q `  ( 1Q  +Q  1Q ) )  e.  Q. )  -> 
( ( 1Q  +Q  1Q )  .Q  (
( *Q `  ( 1Q  +Q  1Q ) )  +Q  ( *Q `  ( 1Q  +Q  1Q ) ) ) )  =  ( ( ( 1Q  +Q  1Q )  .Q  ( *Q `  ( 1Q  +Q  1Q ) ) )  +Q  ( ( 1Q  +Q  1Q )  .Q  ( *Q `  ( 1Q  +Q  1Q ) ) ) ) )
73, 5, 5, 6mp3an 1315 . . . . . . 7  |-  ( ( 1Q  +Q  1Q )  .Q  ( ( *Q
`  ( 1Q  +Q  1Q ) )  +Q  ( *Q `  ( 1Q  +Q  1Q ) ) ) )  =  ( ( ( 1Q  +Q  1Q )  .Q  ( *Q `  ( 1Q  +Q  1Q ) ) )  +Q  ( ( 1Q  +Q  1Q )  .Q  ( *Q `  ( 1Q  +Q  1Q ) ) ) )
8 recidnq 7213 . . . . . . . . 9  |-  ( ( 1Q  +Q  1Q )  e.  Q.  ->  (
( 1Q  +Q  1Q )  .Q  ( *Q `  ( 1Q  +Q  1Q ) ) )  =  1Q )
93, 8ax-mp 5 . . . . . . . 8  |-  ( ( 1Q  +Q  1Q )  .Q  ( *Q `  ( 1Q  +Q  1Q ) ) )  =  1Q
109, 9oveq12i 5786 . . . . . . 7  |-  ( ( ( 1Q  +Q  1Q )  .Q  ( *Q `  ( 1Q  +Q  1Q ) ) )  +Q  ( ( 1Q  +Q  1Q )  .Q  ( *Q `  ( 1Q  +Q  1Q ) ) ) )  =  ( 1Q  +Q  1Q )
117, 10eqtri 2160 . . . . . 6  |-  ( ( 1Q  +Q  1Q )  .Q  ( ( *Q
`  ( 1Q  +Q  1Q ) )  +Q  ( *Q `  ( 1Q  +Q  1Q ) ) ) )  =  ( 1Q  +Q  1Q )
1211oveq1i 5784 . . . . 5  |-  ( ( ( 1Q  +Q  1Q )  .Q  ( ( *Q
`  ( 1Q  +Q  1Q ) )  +Q  ( *Q `  ( 1Q  +Q  1Q ) ) ) )  .Q  ( *Q `  ( 1Q  +Q  1Q ) ) )  =  ( ( 1Q  +Q  1Q )  .Q  ( *Q `  ( 1Q  +Q  1Q ) ) )
139oveq2i 5785 . . . . . 6  |-  ( ( ( *Q `  ( 1Q  +Q  1Q ) )  +Q  ( *Q `  ( 1Q  +Q  1Q ) ) )  .Q  ( ( 1Q  +Q  1Q )  .Q  ( *Q `  ( 1Q  +Q  1Q ) ) ) )  =  ( ( ( *Q `  ( 1Q 
+Q  1Q ) )  +Q  ( *Q `  ( 1Q  +Q  1Q ) ) )  .Q  1Q )
14 addclnq 7195 . . . . . . . . 9  |-  ( ( ( *Q `  ( 1Q  +Q  1Q ) )  e.  Q.  /\  ( *Q `  ( 1Q  +Q  1Q ) )  e.  Q. )  ->  ( ( *Q
`  ( 1Q  +Q  1Q ) )  +Q  ( *Q `  ( 1Q  +Q  1Q ) ) )  e. 
Q. )
155, 5, 14mp2an 422 . . . . . . . 8  |-  ( ( *Q `  ( 1Q 
+Q  1Q ) )  +Q  ( *Q `  ( 1Q  +Q  1Q ) ) )  e. 
Q.
16 mulassnqg 7204 . . . . . . . 8  |-  ( ( ( ( *Q `  ( 1Q  +Q  1Q ) )  +Q  ( *Q `  ( 1Q  +Q  1Q ) ) )  e. 
Q.  /\  ( 1Q  +Q  1Q )  e.  Q.  /\  ( *Q `  ( 1Q  +Q  1Q ) )  e.  Q. )  -> 
( ( ( ( *Q `  ( 1Q 
+Q  1Q ) )  +Q  ( *Q `  ( 1Q  +Q  1Q ) ) )  .Q  ( 1Q  +Q  1Q ) )  .Q  ( *Q `  ( 1Q  +Q  1Q ) ) )  =  ( ( ( *Q
`  ( 1Q  +Q  1Q ) )  +Q  ( *Q `  ( 1Q  +Q  1Q ) ) )  .Q  ( ( 1Q  +Q  1Q )  .Q  ( *Q `  ( 1Q  +Q  1Q ) ) ) ) )
1715, 3, 5, 16mp3an 1315 . . . . . . 7  |-  ( ( ( ( *Q `  ( 1Q  +Q  1Q ) )  +Q  ( *Q `  ( 1Q  +Q  1Q ) ) )  .Q  ( 1Q  +Q  1Q ) )  .Q  ( *Q `  ( 1Q  +Q  1Q ) ) )  =  ( ( ( *Q
`  ( 1Q  +Q  1Q ) )  +Q  ( *Q `  ( 1Q  +Q  1Q ) ) )  .Q  ( ( 1Q  +Q  1Q )  .Q  ( *Q `  ( 1Q  +Q  1Q ) ) ) )
18 mulcomnqg 7203 . . . . . . . . 9  |-  ( ( ( ( *Q `  ( 1Q  +Q  1Q ) )  +Q  ( *Q `  ( 1Q  +Q  1Q ) ) )  e. 
Q.  /\  ( 1Q  +Q  1Q )  e.  Q. )  ->  ( ( ( *Q `  ( 1Q 
+Q  1Q ) )  +Q  ( *Q `  ( 1Q  +Q  1Q ) ) )  .Q  ( 1Q  +Q  1Q ) )  =  ( ( 1Q  +Q  1Q )  .Q  ( ( *Q
`  ( 1Q  +Q  1Q ) )  +Q  ( *Q `  ( 1Q  +Q  1Q ) ) ) ) )
1915, 3, 18mp2an 422 . . . . . . . 8  |-  ( ( ( *Q `  ( 1Q  +Q  1Q ) )  +Q  ( *Q `  ( 1Q  +Q  1Q ) ) )  .Q  ( 1Q  +Q  1Q ) )  =  ( ( 1Q  +Q  1Q )  .Q  ( ( *Q
`  ( 1Q  +Q  1Q ) )  +Q  ( *Q `  ( 1Q  +Q  1Q ) ) ) )
2019oveq1i 5784 . . . . . . 7  |-  ( ( ( ( *Q `  ( 1Q  +Q  1Q ) )  +Q  ( *Q `  ( 1Q  +Q  1Q ) ) )  .Q  ( 1Q  +Q  1Q ) )  .Q  ( *Q `  ( 1Q  +Q  1Q ) ) )  =  ( ( ( 1Q 
+Q  1Q )  .Q  ( ( *Q `  ( 1Q  +Q  1Q ) )  +Q  ( *Q `  ( 1Q  +Q  1Q ) ) ) )  .Q  ( *Q `  ( 1Q  +Q  1Q ) ) )
2117, 20eqtr3i 2162 . . . . . 6  |-  ( ( ( *Q `  ( 1Q  +Q  1Q ) )  +Q  ( *Q `  ( 1Q  +Q  1Q ) ) )  .Q  ( ( 1Q  +Q  1Q )  .Q  ( *Q `  ( 1Q  +Q  1Q ) ) ) )  =  ( ( ( 1Q  +Q  1Q )  .Q  ( ( *Q
`  ( 1Q  +Q  1Q ) )  +Q  ( *Q `  ( 1Q  +Q  1Q ) ) ) )  .Q  ( *Q `  ( 1Q  +Q  1Q ) ) )
224, 4, 14syl2anc 408 . . . . . . 7  |-  ( ( 1Q  +Q  1Q )  e.  Q.  ->  (
( *Q `  ( 1Q  +Q  1Q ) )  +Q  ( *Q `  ( 1Q  +Q  1Q ) ) )  e. 
Q. )
23 mulidnq 7209 . . . . . . 7  |-  ( ( ( *Q `  ( 1Q  +Q  1Q ) )  +Q  ( *Q `  ( 1Q  +Q  1Q ) ) )  e. 
Q.  ->  ( ( ( *Q `  ( 1Q 
+Q  1Q ) )  +Q  ( *Q `  ( 1Q  +Q  1Q ) ) )  .Q  1Q )  =  ( ( *Q `  ( 1Q  +Q  1Q ) )  +Q  ( *Q `  ( 1Q  +Q  1Q ) ) ) )
243, 22, 23mp2b 8 . . . . . 6  |-  ( ( ( *Q `  ( 1Q  +Q  1Q ) )  +Q  ( *Q `  ( 1Q  +Q  1Q ) ) )  .Q  1Q )  =  ( ( *Q `  ( 1Q  +Q  1Q ) )  +Q  ( *Q `  ( 1Q  +Q  1Q ) ) )
2513, 21, 243eqtr3i 2168 . . . . 5  |-  ( ( ( 1Q  +Q  1Q )  .Q  ( ( *Q
`  ( 1Q  +Q  1Q ) )  +Q  ( *Q `  ( 1Q  +Q  1Q ) ) ) )  .Q  ( *Q `  ( 1Q  +Q  1Q ) ) )  =  ( ( *Q `  ( 1Q  +Q  1Q ) )  +Q  ( *Q `  ( 1Q  +Q  1Q ) ) )
2612, 25, 93eqtr3i 2168 . . . 4  |-  ( ( *Q `  ( 1Q 
+Q  1Q ) )  +Q  ( *Q `  ( 1Q  +Q  1Q ) ) )  =  1Q
2726oveq2i 5785 . . 3  |-  ( A  .Q  ( ( *Q
`  ( 1Q  +Q  1Q ) )  +Q  ( *Q `  ( 1Q  +Q  1Q ) ) ) )  =  ( A  .Q  1Q )
28 distrnqg 7207 . . . 4  |-  ( ( A  e.  Q.  /\  ( *Q `  ( 1Q 
+Q  1Q ) )  e.  Q.  /\  ( *Q `  ( 1Q  +Q  1Q ) )  e.  Q. )  ->  ( A  .Q  ( ( *Q `  ( 1Q  +Q  1Q ) )  +Q  ( *Q `  ( 1Q  +Q  1Q ) ) ) )  =  ( ( A  .Q  ( *Q `  ( 1Q  +Q  1Q ) ) )  +Q  ( A  .Q  ( *Q `  ( 1Q  +Q  1Q ) ) ) ) )
295, 5, 28mp3an23 1307 . . 3  |-  ( A  e.  Q.  ->  ( A  .Q  ( ( *Q
`  ( 1Q  +Q  1Q ) )  +Q  ( *Q `  ( 1Q  +Q  1Q ) ) ) )  =  ( ( A  .Q  ( *Q `  ( 1Q  +Q  1Q ) ) )  +Q  ( A  .Q  ( *Q `  ( 1Q  +Q  1Q ) ) ) ) )
30 mulidnq 7209 . . 3  |-  ( A  e.  Q.  ->  ( A  .Q  1Q )  =  A )
3127, 29, 303eqtr3a 2196 . 2  |-  ( A  e.  Q.  ->  (
( A  .Q  ( *Q `  ( 1Q  +Q  1Q ) ) )  +Q  ( A  .Q  ( *Q `  ( 1Q  +Q  1Q ) ) ) )  =  A )
32 mulclnq 7196 . . . 4  |-  ( ( A  e.  Q.  /\  ( *Q `  ( 1Q 
+Q  1Q ) )  e.  Q. )  -> 
( A  .Q  ( *Q `  ( 1Q  +Q  1Q ) ) )  e. 
Q. )
335, 32mpan2 421 . . 3  |-  ( A  e.  Q.  ->  ( A  .Q  ( *Q `  ( 1Q  +Q  1Q ) ) )  e. 
Q. )
34 id 19 . . . . . 6  |-  ( x  =  ( A  .Q  ( *Q `  ( 1Q 
+Q  1Q ) ) )  ->  x  =  ( A  .Q  ( *Q `  ( 1Q  +Q  1Q ) ) ) )
3534, 34oveq12d 5792 . . . . 5  |-  ( x  =  ( A  .Q  ( *Q `  ( 1Q 
+Q  1Q ) ) )  ->  ( x  +Q  x )  =  ( ( A  .Q  ( *Q `  ( 1Q  +Q  1Q ) ) )  +Q  ( A  .Q  ( *Q `  ( 1Q  +Q  1Q ) ) ) ) )
3635eqeq1d 2148 . . . 4  |-  ( x  =  ( A  .Q  ( *Q `  ( 1Q 
+Q  1Q ) ) )  ->  ( (
x  +Q  x )  =  A  <->  ( ( A  .Q  ( *Q `  ( 1Q  +Q  1Q ) ) )  +Q  ( A  .Q  ( *Q `  ( 1Q  +Q  1Q ) ) ) )  =  A ) )
3736adantl 275 . . 3  |-  ( ( A  e.  Q.  /\  x  =  ( A  .Q  ( *Q `  ( 1Q  +Q  1Q ) ) ) )  ->  (
( x  +Q  x
)  =  A  <->  ( ( A  .Q  ( *Q `  ( 1Q  +Q  1Q ) ) )  +Q  ( A  .Q  ( *Q `  ( 1Q  +Q  1Q ) ) ) )  =  A ) )
3833, 37rspcedv 2793 . 2  |-  ( A  e.  Q.  ->  (
( ( A  .Q  ( *Q `  ( 1Q 
+Q  1Q ) ) )  +Q  ( A  .Q  ( *Q `  ( 1Q  +Q  1Q ) ) ) )  =  A  ->  E. x  e.  Q.  ( x  +Q  x )  =  A ) )
3931, 38mpd 13 1  |-  ( A  e.  Q.  ->  E. x  e.  Q.  ( x  +Q  x )  =  A )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 104    = wceq 1331    e. wcel 1480   E.wrex 2417   ` cfv 5123  (class class class)co 5774   Q.cnq 7100   1Qc1q 7101    +Q cplq 7102    .Q cmq 7103   *Qcrq 7104
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 603  ax-in2 604  ax-io 698  ax-5 1423  ax-7 1424  ax-gen 1425  ax-ie1 1469  ax-ie2 1470  ax-8 1482  ax-10 1483  ax-11 1484  ax-i12 1485  ax-bndl 1486  ax-4 1487  ax-13 1491  ax-14 1492  ax-17 1506  ax-i9 1510  ax-ial 1514  ax-i5r 1515  ax-ext 2121  ax-coll 4043  ax-sep 4046  ax-nul 4054  ax-pow 4098  ax-pr 4131  ax-un 4355  ax-setind 4452  ax-iinf 4502
This theorem depends on definitions:  df-bi 116  df-dc 820  df-3or 963  df-3an 964  df-tru 1334  df-fal 1337  df-nf 1437  df-sb 1736  df-eu 2002  df-mo 2003  df-clab 2126  df-cleq 2132  df-clel 2135  df-nfc 2270  df-ne 2309  df-ral 2421  df-rex 2422  df-reu 2423  df-rab 2425  df-v 2688  df-sbc 2910  df-csb 3004  df-dif 3073  df-un 3075  df-in 3077  df-ss 3084  df-nul 3364  df-pw 3512  df-sn 3533  df-pr 3534  df-op 3536  df-uni 3737  df-int 3772  df-iun 3815  df-br 3930  df-opab 3990  df-mpt 3991  df-tr 4027  df-id 4215  df-iord 4288  df-on 4290  df-suc 4293  df-iom 4505  df-xp 4545  df-rel 4546  df-cnv 4547  df-co 4548  df-dm 4549  df-rn 4550  df-res 4551  df-ima 4552  df-iota 5088  df-fun 5125  df-fn 5126  df-f 5127  df-f1 5128  df-fo 5129  df-f1o 5130  df-fv 5131  df-ov 5777  df-oprab 5778  df-mpo 5779  df-1st 6038  df-2nd 6039  df-recs 6202  df-irdg 6267  df-1o 6313  df-oadd 6317  df-omul 6318  df-er 6429  df-ec 6431  df-qs 6435  df-ni 7124  df-pli 7125  df-mi 7126  df-plpq 7164  df-mpq 7165  df-enq 7167  df-nqqs 7168  df-plqqs 7169  df-mqqs 7170  df-1nqqs 7171  df-rq 7172
This theorem is referenced by:  halfnq  7231  nsmallnqq  7232  subhalfnqq  7234  addlocpr  7356  addcanprleml  7434  addcanprlemu  7435  cauappcvgprlemm  7465  cauappcvgprlem1  7479  caucvgprlemm  7488
  Copyright terms: Public domain W3C validator