Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > halfnqq | Unicode version |
Description: One-half of any positive fraction is a fraction. (Contributed by Jim Kingdon, 23-Sep-2019.) |
Ref | Expression |
---|---|
halfnqq |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 1nq 7307 | . . . . . . . . 9 | |
2 | addclnq 7316 | . . . . . . . . 9 | |
3 | 1, 1, 2 | mp2an 423 | . . . . . . . 8 |
4 | recclnq 7333 | . . . . . . . . 9 | |
5 | 3, 4 | ax-mp 5 | . . . . . . . 8 |
6 | distrnqg 7328 | . . . . . . . 8 | |
7 | 3, 5, 5, 6 | mp3an 1327 | . . . . . . 7 |
8 | recidnq 7334 | . . . . . . . . 9 | |
9 | 3, 8 | ax-mp 5 | . . . . . . . 8 |
10 | 9, 9 | oveq12i 5854 | . . . . . . 7 |
11 | 7, 10 | eqtri 2186 | . . . . . 6 |
12 | 11 | oveq1i 5852 | . . . . 5 |
13 | 9 | oveq2i 5853 | . . . . . 6 |
14 | addclnq 7316 | . . . . . . . . 9 | |
15 | 5, 5, 14 | mp2an 423 | . . . . . . . 8 |
16 | mulassnqg 7325 | . . . . . . . 8 | |
17 | 15, 3, 5, 16 | mp3an 1327 | . . . . . . 7 |
18 | mulcomnqg 7324 | . . . . . . . . 9 | |
19 | 15, 3, 18 | mp2an 423 | . . . . . . . 8 |
20 | 19 | oveq1i 5852 | . . . . . . 7 |
21 | 17, 20 | eqtr3i 2188 | . . . . . 6 |
22 | 4, 4, 14 | syl2anc 409 | . . . . . . 7 |
23 | mulidnq 7330 | . . . . . . 7 | |
24 | 3, 22, 23 | mp2b 8 | . . . . . 6 |
25 | 13, 21, 24 | 3eqtr3i 2194 | . . . . 5 |
26 | 12, 25, 9 | 3eqtr3i 2194 | . . . 4 |
27 | 26 | oveq2i 5853 | . . 3 |
28 | distrnqg 7328 | . . . 4 | |
29 | 5, 5, 28 | mp3an23 1319 | . . 3 |
30 | mulidnq 7330 | . . 3 | |
31 | 27, 29, 30 | 3eqtr3a 2223 | . 2 |
32 | mulclnq 7317 | . . . 4 | |
33 | 5, 32 | mpan2 422 | . . 3 |
34 | id 19 | . . . . . 6 | |
35 | 34, 34 | oveq12d 5860 | . . . . 5 |
36 | 35 | eqeq1d 2174 | . . . 4 |
37 | 36 | adantl 275 | . . 3 |
38 | 33, 37 | rspcedv 2834 | . 2 |
39 | 31, 38 | mpd 13 | 1 |
Colors of variables: wff set class |
Syntax hints: wi 4 wb 104 wceq 1343 wcel 2136 wrex 2445 cfv 5188 (class class class)co 5842 cnq 7221 c1q 7222 cplq 7223 cmq 7224 crq 7225 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 604 ax-in2 605 ax-io 699 ax-5 1435 ax-7 1436 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-8 1492 ax-10 1493 ax-11 1494 ax-i12 1495 ax-bndl 1497 ax-4 1498 ax-17 1514 ax-i9 1518 ax-ial 1522 ax-i5r 1523 ax-13 2138 ax-14 2139 ax-ext 2147 ax-coll 4097 ax-sep 4100 ax-nul 4108 ax-pow 4153 ax-pr 4187 ax-un 4411 ax-setind 4514 ax-iinf 4565 |
This theorem depends on definitions: df-bi 116 df-dc 825 df-3or 969 df-3an 970 df-tru 1346 df-fal 1349 df-nf 1449 df-sb 1751 df-eu 2017 df-mo 2018 df-clab 2152 df-cleq 2158 df-clel 2161 df-nfc 2297 df-ne 2337 df-ral 2449 df-rex 2450 df-reu 2451 df-rab 2453 df-v 2728 df-sbc 2952 df-csb 3046 df-dif 3118 df-un 3120 df-in 3122 df-ss 3129 df-nul 3410 df-pw 3561 df-sn 3582 df-pr 3583 df-op 3585 df-uni 3790 df-int 3825 df-iun 3868 df-br 3983 df-opab 4044 df-mpt 4045 df-tr 4081 df-id 4271 df-iord 4344 df-on 4346 df-suc 4349 df-iom 4568 df-xp 4610 df-rel 4611 df-cnv 4612 df-co 4613 df-dm 4614 df-rn 4615 df-res 4616 df-ima 4617 df-iota 5153 df-fun 5190 df-fn 5191 df-f 5192 df-f1 5193 df-fo 5194 df-f1o 5195 df-fv 5196 df-ov 5845 df-oprab 5846 df-mpo 5847 df-1st 6108 df-2nd 6109 df-recs 6273 df-irdg 6338 df-1o 6384 df-oadd 6388 df-omul 6389 df-er 6501 df-ec 6503 df-qs 6507 df-ni 7245 df-pli 7246 df-mi 7247 df-plpq 7285 df-mpq 7286 df-enq 7288 df-nqqs 7289 df-plqqs 7290 df-mqqs 7291 df-1nqqs 7292 df-rq 7293 |
This theorem is referenced by: halfnq 7352 nsmallnqq 7353 subhalfnqq 7355 addlocpr 7477 addcanprleml 7555 addcanprlemu 7556 cauappcvgprlemm 7586 cauappcvgprlem1 7600 caucvgprlemm 7609 |
Copyright terms: Public domain | W3C validator |