Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > halfnqq | Unicode version |
Description: One-half of any positive fraction is a fraction. (Contributed by Jim Kingdon, 23-Sep-2019.) |
Ref | Expression |
---|---|
halfnqq |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 1nq 7328 | . . . . . . . . 9 | |
2 | addclnq 7337 | . . . . . . . . 9 | |
3 | 1, 1, 2 | mp2an 424 | . . . . . . . 8 |
4 | recclnq 7354 | . . . . . . . . 9 | |
5 | 3, 4 | ax-mp 5 | . . . . . . . 8 |
6 | distrnqg 7349 | . . . . . . . 8 | |
7 | 3, 5, 5, 6 | mp3an 1332 | . . . . . . 7 |
8 | recidnq 7355 | . . . . . . . . 9 | |
9 | 3, 8 | ax-mp 5 | . . . . . . . 8 |
10 | 9, 9 | oveq12i 5865 | . . . . . . 7 |
11 | 7, 10 | eqtri 2191 | . . . . . 6 |
12 | 11 | oveq1i 5863 | . . . . 5 |
13 | 9 | oveq2i 5864 | . . . . . 6 |
14 | addclnq 7337 | . . . . . . . . 9 | |
15 | 5, 5, 14 | mp2an 424 | . . . . . . . 8 |
16 | mulassnqg 7346 | . . . . . . . 8 | |
17 | 15, 3, 5, 16 | mp3an 1332 | . . . . . . 7 |
18 | mulcomnqg 7345 | . . . . . . . . 9 | |
19 | 15, 3, 18 | mp2an 424 | . . . . . . . 8 |
20 | 19 | oveq1i 5863 | . . . . . . 7 |
21 | 17, 20 | eqtr3i 2193 | . . . . . 6 |
22 | 4, 4, 14 | syl2anc 409 | . . . . . . 7 |
23 | mulidnq 7351 | . . . . . . 7 | |
24 | 3, 22, 23 | mp2b 8 | . . . . . 6 |
25 | 13, 21, 24 | 3eqtr3i 2199 | . . . . 5 |
26 | 12, 25, 9 | 3eqtr3i 2199 | . . . 4 |
27 | 26 | oveq2i 5864 | . . 3 |
28 | distrnqg 7349 | . . . 4 | |
29 | 5, 5, 28 | mp3an23 1324 | . . 3 |
30 | mulidnq 7351 | . . 3 | |
31 | 27, 29, 30 | 3eqtr3a 2227 | . 2 |
32 | mulclnq 7338 | . . . 4 | |
33 | 5, 32 | mpan2 423 | . . 3 |
34 | id 19 | . . . . . 6 | |
35 | 34, 34 | oveq12d 5871 | . . . . 5 |
36 | 35 | eqeq1d 2179 | . . . 4 |
37 | 36 | adantl 275 | . . 3 |
38 | 33, 37 | rspcedv 2838 | . 2 |
39 | 31, 38 | mpd 13 | 1 |
Colors of variables: wff set class |
Syntax hints: wi 4 wb 104 wceq 1348 wcel 2141 wrex 2449 cfv 5198 (class class class)co 5853 cnq 7242 c1q 7243 cplq 7244 cmq 7245 crq 7246 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 609 ax-in2 610 ax-io 704 ax-5 1440 ax-7 1441 ax-gen 1442 ax-ie1 1486 ax-ie2 1487 ax-8 1497 ax-10 1498 ax-11 1499 ax-i12 1500 ax-bndl 1502 ax-4 1503 ax-17 1519 ax-i9 1523 ax-ial 1527 ax-i5r 1528 ax-13 2143 ax-14 2144 ax-ext 2152 ax-coll 4104 ax-sep 4107 ax-nul 4115 ax-pow 4160 ax-pr 4194 ax-un 4418 ax-setind 4521 ax-iinf 4572 |
This theorem depends on definitions: df-bi 116 df-dc 830 df-3or 974 df-3an 975 df-tru 1351 df-fal 1354 df-nf 1454 df-sb 1756 df-eu 2022 df-mo 2023 df-clab 2157 df-cleq 2163 df-clel 2166 df-nfc 2301 df-ne 2341 df-ral 2453 df-rex 2454 df-reu 2455 df-rab 2457 df-v 2732 df-sbc 2956 df-csb 3050 df-dif 3123 df-un 3125 df-in 3127 df-ss 3134 df-nul 3415 df-pw 3568 df-sn 3589 df-pr 3590 df-op 3592 df-uni 3797 df-int 3832 df-iun 3875 df-br 3990 df-opab 4051 df-mpt 4052 df-tr 4088 df-id 4278 df-iord 4351 df-on 4353 df-suc 4356 df-iom 4575 df-xp 4617 df-rel 4618 df-cnv 4619 df-co 4620 df-dm 4621 df-rn 4622 df-res 4623 df-ima 4624 df-iota 5160 df-fun 5200 df-fn 5201 df-f 5202 df-f1 5203 df-fo 5204 df-f1o 5205 df-fv 5206 df-ov 5856 df-oprab 5857 df-mpo 5858 df-1st 6119 df-2nd 6120 df-recs 6284 df-irdg 6349 df-1o 6395 df-oadd 6399 df-omul 6400 df-er 6513 df-ec 6515 df-qs 6519 df-ni 7266 df-pli 7267 df-mi 7268 df-plpq 7306 df-mpq 7307 df-enq 7309 df-nqqs 7310 df-plqqs 7311 df-mqqs 7312 df-1nqqs 7313 df-rq 7314 |
This theorem is referenced by: halfnq 7373 nsmallnqq 7374 subhalfnqq 7376 addlocpr 7498 addcanprleml 7576 addcanprlemu 7577 cauappcvgprlemm 7607 cauappcvgprlem1 7621 caucvgprlemm 7630 |
Copyright terms: Public domain | W3C validator |