ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  coi2 Unicode version

Theorem coi2 5166
Description: Composition with the identity relation. Part of Theorem 3.7(i) of [Monk1] p. 36. (Contributed by NM, 22-Apr-2004.)
Assertion
Ref Expression
coi2  |-  ( Rel 
A  ->  (  _I  o.  A )  =  A )

Proof of Theorem coi2
StepHypRef Expression
1 cnvco 4833 . . 3  |-  `' ( `' A  o.  _I  )  =  ( `'  _I  o.  `' `' A
)
2 relcnv 5027 . . . . 5  |-  Rel  `' A
3 coi1 5165 . . . . 5  |-  ( Rel  `' A  ->  ( `' A  o.  _I  )  =  `' A )
42, 3ax-mp 5 . . . 4  |-  ( `' A  o.  _I  )  =  `' A
54cnveqi 4823 . . 3  |-  `' ( `' A  o.  _I  )  =  `' `' A
61, 5eqtr3i 2212 . 2  |-  ( `'  _I  o.  `' `' A )  =  `' `' A
7 dfrel2 5100 . . 3  |-  ( Rel 
A  <->  `' `' A  =  A
)
8 cnvi 5054 . . . 4  |-  `'  _I  =  _I
9 coeq2 4806 . . . . 5  |-  ( `' `' A  =  A  ->  ( `'  _I  o.  `' `' A )  =  ( `'  _I  o.  A ) )
10 coeq1 4805 . . . . 5  |-  ( `'  _I  =  _I  ->  ( `'  _I  o.  A )  =  (  _I  o.  A ) )
119, 10sylan9eq 2242 . . . 4  |-  ( ( `' `' A  =  A  /\  `'  _I  =  _I  )  ->  ( `'  _I  o.  `' `' A )  =  (  _I  o.  A ) )
128, 11mpan2 425 . . 3  |-  ( `' `' A  =  A  ->  ( `'  _I  o.  `' `' A )  =  (  _I  o.  A ) )
137, 12sylbi 121 . 2  |-  ( Rel 
A  ->  ( `'  _I  o.  `' `' A
)  =  (  _I  o.  A ) )
147biimpi 120 . 2  |-  ( Rel 
A  ->  `' `' A  =  A )
156, 13, 143eqtr3a 2246 1  |-  ( Rel 
A  ->  (  _I  o.  A )  =  A )
Colors of variables: wff set class
Syntax hints:    -> wi 4    = wceq 1364    _I cid 4309   `'ccnv 4646    o. ccom 4651   Rel wrel 4652
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-14 2163  ax-ext 2171  ax-sep 4139  ax-pow 4195  ax-pr 4230
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-nf 1472  df-sb 1774  df-eu 2041  df-mo 2042  df-clab 2176  df-cleq 2182  df-clel 2185  df-nfc 2321  df-ral 2473  df-rex 2474  df-v 2754  df-un 3148  df-in 3150  df-ss 3157  df-pw 3595  df-sn 3616  df-pr 3617  df-op 3619  df-br 4022  df-opab 4083  df-id 4314  df-xp 4653  df-rel 4654  df-cnv 4655  df-co 4656
This theorem is referenced by:  relcoi2  5180  funi  5270  fcoi2  5419
  Copyright terms: Public domain W3C validator