ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  coi2 Unicode version

Theorem coi2 5120
Description: Composition with the identity relation. Part of Theorem 3.7(i) of [Monk1] p. 36. (Contributed by NM, 22-Apr-2004.)
Assertion
Ref Expression
coi2  |-  ( Rel 
A  ->  (  _I  o.  A )  =  A )

Proof of Theorem coi2
StepHypRef Expression
1 cnvco 4789 . . 3  |-  `' ( `' A  o.  _I  )  =  ( `'  _I  o.  `' `' A
)
2 relcnv 4982 . . . . 5  |-  Rel  `' A
3 coi1 5119 . . . . 5  |-  ( Rel  `' A  ->  ( `' A  o.  _I  )  =  `' A )
42, 3ax-mp 5 . . . 4  |-  ( `' A  o.  _I  )  =  `' A
54cnveqi 4779 . . 3  |-  `' ( `' A  o.  _I  )  =  `' `' A
61, 5eqtr3i 2188 . 2  |-  ( `'  _I  o.  `' `' A )  =  `' `' A
7 dfrel2 5054 . . 3  |-  ( Rel 
A  <->  `' `' A  =  A
)
8 cnvi 5008 . . . 4  |-  `'  _I  =  _I
9 coeq2 4762 . . . . 5  |-  ( `' `' A  =  A  ->  ( `'  _I  o.  `' `' A )  =  ( `'  _I  o.  A ) )
10 coeq1 4761 . . . . 5  |-  ( `'  _I  =  _I  ->  ( `'  _I  o.  A )  =  (  _I  o.  A ) )
119, 10sylan9eq 2219 . . . 4  |-  ( ( `' `' A  =  A  /\  `'  _I  =  _I  )  ->  ( `'  _I  o.  `' `' A )  =  (  _I  o.  A ) )
128, 11mpan2 422 . . 3  |-  ( `' `' A  =  A  ->  ( `'  _I  o.  `' `' A )  =  (  _I  o.  A ) )
137, 12sylbi 120 . 2  |-  ( Rel 
A  ->  ( `'  _I  o.  `' `' A
)  =  (  _I  o.  A ) )
147biimpi 119 . 2  |-  ( Rel 
A  ->  `' `' A  =  A )
156, 13, 143eqtr3a 2223 1  |-  ( Rel 
A  ->  (  _I  o.  A )  =  A )
Colors of variables: wff set class
Syntax hints:    -> wi 4    = wceq 1343    _I cid 4266   `'ccnv 4603    o. ccom 4608   Rel wrel 4609
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 699  ax-5 1435  ax-7 1436  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-10 1493  ax-11 1494  ax-i12 1495  ax-bndl 1497  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522  ax-i5r 1523  ax-14 2139  ax-ext 2147  ax-sep 4100  ax-pow 4153  ax-pr 4187
This theorem depends on definitions:  df-bi 116  df-3an 970  df-tru 1346  df-nf 1449  df-sb 1751  df-eu 2017  df-mo 2018  df-clab 2152  df-cleq 2158  df-clel 2161  df-nfc 2297  df-ral 2449  df-rex 2450  df-v 2728  df-un 3120  df-in 3122  df-ss 3129  df-pw 3561  df-sn 3582  df-pr 3583  df-op 3585  df-br 3983  df-opab 4044  df-id 4271  df-xp 4610  df-rel 4611  df-cnv 4612  df-co 4613
This theorem is referenced by:  relcoi2  5134  funi  5220  fcoi2  5369
  Copyright terms: Public domain W3C validator