ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  coi2 Unicode version

Theorem coi2 5199
Description: Composition with the identity relation. Part of Theorem 3.7(i) of [Monk1] p. 36. (Contributed by NM, 22-Apr-2004.)
Assertion
Ref Expression
coi2  |-  ( Rel 
A  ->  (  _I  o.  A )  =  A )

Proof of Theorem coi2
StepHypRef Expression
1 cnvco 4863 . . 3  |-  `' ( `' A  o.  _I  )  =  ( `'  _I  o.  `' `' A
)
2 relcnv 5060 . . . . 5  |-  Rel  `' A
3 coi1 5198 . . . . 5  |-  ( Rel  `' A  ->  ( `' A  o.  _I  )  =  `' A )
42, 3ax-mp 5 . . . 4  |-  ( `' A  o.  _I  )  =  `' A
54cnveqi 4853 . . 3  |-  `' ( `' A  o.  _I  )  =  `' `' A
61, 5eqtr3i 2228 . 2  |-  ( `'  _I  o.  `' `' A )  =  `' `' A
7 dfrel2 5133 . . 3  |-  ( Rel 
A  <->  `' `' A  =  A
)
8 cnvi 5087 . . . 4  |-  `'  _I  =  _I
9 coeq2 4836 . . . . 5  |-  ( `' `' A  =  A  ->  ( `'  _I  o.  `' `' A )  =  ( `'  _I  o.  A ) )
10 coeq1 4835 . . . . 5  |-  ( `'  _I  =  _I  ->  ( `'  _I  o.  A )  =  (  _I  o.  A ) )
119, 10sylan9eq 2258 . . . 4  |-  ( ( `' `' A  =  A  /\  `'  _I  =  _I  )  ->  ( `'  _I  o.  `' `' A )  =  (  _I  o.  A ) )
128, 11mpan2 425 . . 3  |-  ( `' `' A  =  A  ->  ( `'  _I  o.  `' `' A )  =  (  _I  o.  A ) )
137, 12sylbi 121 . 2  |-  ( Rel 
A  ->  ( `'  _I  o.  `' `' A
)  =  (  _I  o.  A ) )
147biimpi 120 . 2  |-  ( Rel 
A  ->  `' `' A  =  A )
156, 13, 143eqtr3a 2262 1  |-  ( Rel 
A  ->  (  _I  o.  A )  =  A )
Colors of variables: wff set class
Syntax hints:    -> wi 4    = wceq 1373    _I cid 4335   `'ccnv 4674    o. ccom 4679   Rel wrel 4680
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 711  ax-5 1470  ax-7 1471  ax-gen 1472  ax-ie1 1516  ax-ie2 1517  ax-8 1527  ax-10 1528  ax-11 1529  ax-i12 1530  ax-bndl 1532  ax-4 1533  ax-17 1549  ax-i9 1553  ax-ial 1557  ax-i5r 1558  ax-14 2179  ax-ext 2187  ax-sep 4162  ax-pow 4218  ax-pr 4253
This theorem depends on definitions:  df-bi 117  df-3an 983  df-tru 1376  df-nf 1484  df-sb 1786  df-eu 2057  df-mo 2058  df-clab 2192  df-cleq 2198  df-clel 2201  df-nfc 2337  df-ral 2489  df-rex 2490  df-v 2774  df-un 3170  df-in 3172  df-ss 3179  df-pw 3618  df-sn 3639  df-pr 3640  df-op 3642  df-br 4045  df-opab 4106  df-id 4340  df-xp 4681  df-rel 4682  df-cnv 4683  df-co 4684
This theorem is referenced by:  relcoi2  5213  funi  5303  fcoi2  5457
  Copyright terms: Public domain W3C validator