ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  coi2 Unicode version

Theorem coi2 5244
Description: Composition with the identity relation. Part of Theorem 3.7(i) of [Monk1] p. 36. (Contributed by NM, 22-Apr-2004.)
Assertion
Ref Expression
coi2  |-  ( Rel 
A  ->  (  _I  o.  A )  =  A )

Proof of Theorem coi2
StepHypRef Expression
1 cnvco 4906 . . 3  |-  `' ( `' A  o.  _I  )  =  ( `'  _I  o.  `' `' A
)
2 relcnv 5105 . . . . 5  |-  Rel  `' A
3 coi1 5243 . . . . 5  |-  ( Rel  `' A  ->  ( `' A  o.  _I  )  =  `' A )
42, 3ax-mp 5 . . . 4  |-  ( `' A  o.  _I  )  =  `' A
54cnveqi 4896 . . 3  |-  `' ( `' A  o.  _I  )  =  `' `' A
61, 5eqtr3i 2252 . 2  |-  ( `'  _I  o.  `' `' A )  =  `' `' A
7 dfrel2 5178 . . 3  |-  ( Rel 
A  <->  `' `' A  =  A
)
8 cnvi 5132 . . . 4  |-  `'  _I  =  _I
9 coeq2 4879 . . . . 5  |-  ( `' `' A  =  A  ->  ( `'  _I  o.  `' `' A )  =  ( `'  _I  o.  A ) )
10 coeq1 4878 . . . . 5  |-  ( `'  _I  =  _I  ->  ( `'  _I  o.  A )  =  (  _I  o.  A ) )
119, 10sylan9eq 2282 . . . 4  |-  ( ( `' `' A  =  A  /\  `'  _I  =  _I  )  ->  ( `'  _I  o.  `' `' A )  =  (  _I  o.  A ) )
128, 11mpan2 425 . . 3  |-  ( `' `' A  =  A  ->  ( `'  _I  o.  `' `' A )  =  (  _I  o.  A ) )
137, 12sylbi 121 . 2  |-  ( Rel 
A  ->  ( `'  _I  o.  `' `' A
)  =  (  _I  o.  A ) )
147biimpi 120 . 2  |-  ( Rel 
A  ->  `' `' A  =  A )
156, 13, 143eqtr3a 2286 1  |-  ( Rel 
A  ->  (  _I  o.  A )  =  A )
Colors of variables: wff set class
Syntax hints:    -> wi 4    = wceq 1395    _I cid 4378   `'ccnv 4717    o. ccom 4722   Rel wrel 4723
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-14 2203  ax-ext 2211  ax-sep 4201  ax-pow 4257  ax-pr 4292
This theorem depends on definitions:  df-bi 117  df-3an 1004  df-tru 1398  df-nf 1507  df-sb 1809  df-eu 2080  df-mo 2081  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ral 2513  df-rex 2514  df-v 2801  df-un 3201  df-in 3203  df-ss 3210  df-pw 3651  df-sn 3672  df-pr 3673  df-op 3675  df-br 4083  df-opab 4145  df-id 4383  df-xp 4724  df-rel 4725  df-cnv 4726  df-co 4727
This theorem is referenced by:  relcoi2  5258  funi  5349  fcoi2  5506
  Copyright terms: Public domain W3C validator