ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  efieq1re Unicode version

Theorem efieq1re 11793
Description: A number whose imaginary exponential is one is real. (Contributed by NM, 21-Aug-2008.)
Assertion
Ref Expression
efieq1re  |-  ( ( A  e.  CC  /\  ( exp `  ( _i  x.  A ) )  =  1 )  ->  A  e.  RR )

Proof of Theorem efieq1re
StepHypRef Expression
1 replim 10882 . . . . . . . . 9  |-  ( A  e.  CC  ->  A  =  ( ( Re
`  A )  +  ( _i  x.  (
Im `  A )
) ) )
21oveq2d 5904 . . . . . . . 8  |-  ( A  e.  CC  ->  (
_i  x.  A )  =  ( _i  x.  ( ( Re `  A )  +  ( _i  x.  ( Im
`  A ) ) ) ) )
3 recl 10876 . . . . . . . . . . 11  |-  ( A  e.  CC  ->  (
Re `  A )  e.  RR )
43recnd 8000 . . . . . . . . . 10  |-  ( A  e.  CC  ->  (
Re `  A )  e.  CC )
5 ax-icn 7920 . . . . . . . . . . 11  |-  _i  e.  CC
6 imcl 10877 . . . . . . . . . . . 12  |-  ( A  e.  CC  ->  (
Im `  A )  e.  RR )
76recnd 8000 . . . . . . . . . . 11  |-  ( A  e.  CC  ->  (
Im `  A )  e.  CC )
8 mulcl 7952 . . . . . . . . . . 11  |-  ( ( _i  e.  CC  /\  ( Im `  A )  e.  CC )  -> 
( _i  x.  (
Im `  A )
)  e.  CC )
95, 7, 8sylancr 414 . . . . . . . . . 10  |-  ( A  e.  CC  ->  (
_i  x.  ( Im `  A ) )  e.  CC )
10 adddi 7957 . . . . . . . . . . 11  |-  ( ( _i  e.  CC  /\  ( Re `  A )  e.  CC  /\  (
_i  x.  ( Im `  A ) )  e.  CC )  ->  (
_i  x.  ( (
Re `  A )  +  ( _i  x.  ( Im `  A ) ) ) )  =  ( ( _i  x.  ( Re `  A ) )  +  ( _i  x.  ( _i  x.  ( Im `  A ) ) ) ) )
115, 10mp3an1 1334 . . . . . . . . . 10  |-  ( ( ( Re `  A
)  e.  CC  /\  ( _i  x.  (
Im `  A )
)  e.  CC )  ->  ( _i  x.  ( ( Re `  A )  +  ( _i  x.  ( Im
`  A ) ) ) )  =  ( ( _i  x.  (
Re `  A )
)  +  ( _i  x.  ( _i  x.  ( Im `  A ) ) ) ) )
124, 9, 11syl2anc 411 . . . . . . . . 9  |-  ( A  e.  CC  ->  (
_i  x.  ( (
Re `  A )  +  ( _i  x.  ( Im `  A ) ) ) )  =  ( ( _i  x.  ( Re `  A ) )  +  ( _i  x.  ( _i  x.  ( Im `  A ) ) ) ) )
13 ixi 8554 . . . . . . . . . . . 12  |-  ( _i  x.  _i )  = 
-u 1
1413oveq1i 5898 . . . . . . . . . . 11  |-  ( ( _i  x.  _i )  x.  ( Im `  A ) )  =  ( -u 1  x.  ( Im `  A
) )
15 mulass 7956 . . . . . . . . . . . . 13  |-  ( ( _i  e.  CC  /\  _i  e.  CC  /\  (
Im `  A )  e.  CC )  ->  (
( _i  x.  _i )  x.  ( Im `  A ) )  =  ( _i  x.  (
_i  x.  ( Im `  A ) ) ) )
165, 5, 15mp3an12 1337 . . . . . . . . . . . 12  |-  ( ( Im `  A )  e.  CC  ->  (
( _i  x.  _i )  x.  ( Im `  A ) )  =  ( _i  x.  (
_i  x.  ( Im `  A ) ) ) )
177, 16syl 14 . . . . . . . . . . 11  |-  ( A  e.  CC  ->  (
( _i  x.  _i )  x.  ( Im `  A ) )  =  ( _i  x.  (
_i  x.  ( Im `  A ) ) ) )
187mulm1d 8381 . . . . . . . . . . 11  |-  ( A  e.  CC  ->  ( -u 1  x.  ( Im
`  A ) )  =  -u ( Im `  A ) )
1914, 17, 183eqtr3a 2244 . . . . . . . . . 10  |-  ( A  e.  CC  ->  (
_i  x.  ( _i  x.  ( Im `  A
) ) )  = 
-u ( Im `  A ) )
2019oveq2d 5904 . . . . . . . . 9  |-  ( A  e.  CC  ->  (
( _i  x.  (
Re `  A )
)  +  ( _i  x.  ( _i  x.  ( Im `  A ) ) ) )  =  ( ( _i  x.  ( Re `  A ) )  +  -u (
Im `  A )
) )
2112, 20eqtrd 2220 . . . . . . . 8  |-  ( A  e.  CC  ->  (
_i  x.  ( (
Re `  A )  +  ( _i  x.  ( Im `  A ) ) ) )  =  ( ( _i  x.  ( Re `  A ) )  +  -u (
Im `  A )
) )
222, 21eqtrd 2220 . . . . . . 7  |-  ( A  e.  CC  ->  (
_i  x.  A )  =  ( ( _i  x.  ( Re `  A ) )  + 
-u ( Im `  A ) ) )
2322fveq2d 5531 . . . . . 6  |-  ( A  e.  CC  ->  ( exp `  ( _i  x.  A ) )  =  ( exp `  (
( _i  x.  (
Re `  A )
)  +  -u (
Im `  A )
) ) )
24 mulcl 7952 . . . . . . . 8  |-  ( ( _i  e.  CC  /\  ( Re `  A )  e.  CC )  -> 
( _i  x.  (
Re `  A )
)  e.  CC )
255, 4, 24sylancr 414 . . . . . . 7  |-  ( A  e.  CC  ->  (
_i  x.  ( Re `  A ) )  e.  CC )
266renegcld 8351 . . . . . . . 8  |-  ( A  e.  CC  ->  -u (
Im `  A )  e.  RR )
2726recnd 8000 . . . . . . 7  |-  ( A  e.  CC  ->  -u (
Im `  A )  e.  CC )
28 efadd 11697 . . . . . . 7  |-  ( ( ( _i  x.  (
Re `  A )
)  e.  CC  /\  -u ( Im `  A
)  e.  CC )  ->  ( exp `  (
( _i  x.  (
Re `  A )
)  +  -u (
Im `  A )
) )  =  ( ( exp `  (
_i  x.  ( Re `  A ) ) )  x.  ( exp `  -u (
Im `  A )
) ) )
2925, 27, 28syl2anc 411 . . . . . 6  |-  ( A  e.  CC  ->  ( exp `  ( ( _i  x.  ( Re `  A ) )  + 
-u ( Im `  A ) ) )  =  ( ( exp `  ( _i  x.  (
Re `  A )
) )  x.  ( exp `  -u ( Im `  A ) ) ) )
3023, 29eqtrd 2220 . . . . 5  |-  ( A  e.  CC  ->  ( exp `  ( _i  x.  A ) )  =  ( ( exp `  (
_i  x.  ( Re `  A ) ) )  x.  ( exp `  -u (
Im `  A )
) ) )
3130eqeq1d 2196 . . . 4  |-  ( A  e.  CC  ->  (
( exp `  (
_i  x.  A )
)  =  1  <->  (
( exp `  (
_i  x.  ( Re `  A ) ) )  x.  ( exp `  -u (
Im `  A )
) )  =  1 ) )
32 efcl 11686 . . . . . . . . 9  |-  ( ( _i  x.  ( Re
`  A ) )  e.  CC  ->  ( exp `  ( _i  x.  ( Re `  A ) ) )  e.  CC )
3325, 32syl 14 . . . . . . . 8  |-  ( A  e.  CC  ->  ( exp `  ( _i  x.  ( Re `  A ) ) )  e.  CC )
34 efcl 11686 . . . . . . . . 9  |-  ( -u ( Im `  A )  e.  CC  ->  ( exp `  -u ( Im `  A ) )  e.  CC )
3527, 34syl 14 . . . . . . . 8  |-  ( A  e.  CC  ->  ( exp `  -u ( Im `  A ) )  e.  CC )
3633, 35absmuld 11217 . . . . . . 7  |-  ( A  e.  CC  ->  ( abs `  ( ( exp `  ( _i  x.  (
Re `  A )
) )  x.  ( exp `  -u ( Im `  A ) ) ) )  =  ( ( abs `  ( exp `  ( _i  x.  (
Re `  A )
) ) )  x.  ( abs `  ( exp `  -u ( Im `  A ) ) ) ) )
37 absefi 11790 . . . . . . . . 9  |-  ( ( Re `  A )  e.  RR  ->  ( abs `  ( exp `  (
_i  x.  ( Re `  A ) ) ) )  =  1 )
383, 37syl 14 . . . . . . . 8  |-  ( A  e.  CC  ->  ( abs `  ( exp `  (
_i  x.  ( Re `  A ) ) ) )  =  1 )
3926reefcld 11691 . . . . . . . . 9  |-  ( A  e.  CC  ->  ( exp `  -u ( Im `  A ) )  e.  RR )
40 efgt0 11706 . . . . . . . . . . 11  |-  ( -u ( Im `  A )  e.  RR  ->  0  <  ( exp `  -u (
Im `  A )
) )
4126, 40syl 14 . . . . . . . . . 10  |-  ( A  e.  CC  ->  0  <  ( exp `  -u (
Im `  A )
) )
42 0re 7971 . . . . . . . . . . 11  |-  0  e.  RR
43 ltle 8059 . . . . . . . . . . 11  |-  ( ( 0  e.  RR  /\  ( exp `  -u (
Im `  A )
)  e.  RR )  ->  ( 0  < 
( exp `  -u (
Im `  A )
)  ->  0  <_  ( exp `  -u (
Im `  A )
) ) )
4442, 43mpan 424 . . . . . . . . . 10  |-  ( ( exp `  -u (
Im `  A )
)  e.  RR  ->  ( 0  <  ( exp `  -u ( Im `  A ) )  -> 
0  <_  ( exp `  -u ( Im `  A
) ) ) )
4539, 41, 44sylc 62 . . . . . . . . 9  |-  ( A  e.  CC  ->  0  <_  ( exp `  -u (
Im `  A )
) )
4639, 45absidd 11190 . . . . . . . 8  |-  ( A  e.  CC  ->  ( abs `  ( exp `  -u (
Im `  A )
) )  =  ( exp `  -u (
Im `  A )
) )
4738, 46oveq12d 5906 . . . . . . 7  |-  ( A  e.  CC  ->  (
( abs `  ( exp `  ( _i  x.  ( Re `  A ) ) ) )  x.  ( abs `  ( exp `  -u ( Im `  A ) ) ) )  =  ( 1  x.  ( exp `  -u (
Im `  A )
) ) )
4835mulid2d 7990 . . . . . . 7  |-  ( A  e.  CC  ->  (
1  x.  ( exp `  -u ( Im `  A ) ) )  =  ( exp `  -u (
Im `  A )
) )
4936, 47, 483eqtrrd 2225 . . . . . 6  |-  ( A  e.  CC  ->  ( exp `  -u ( Im `  A ) )  =  ( abs `  (
( exp `  (
_i  x.  ( Re `  A ) ) )  x.  ( exp `  -u (
Im `  A )
) ) ) )
50 fveq2 5527 . . . . . 6  |-  ( ( ( exp `  (
_i  x.  ( Re `  A ) ) )  x.  ( exp `  -u (
Im `  A )
) )  =  1  ->  ( abs `  (
( exp `  (
_i  x.  ( Re `  A ) ) )  x.  ( exp `  -u (
Im `  A )
) ) )  =  ( abs `  1
) )
5149, 50sylan9eq 2240 . . . . 5  |-  ( ( A  e.  CC  /\  ( ( exp `  (
_i  x.  ( Re `  A ) ) )  x.  ( exp `  -u (
Im `  A )
) )  =  1 )  ->  ( exp `  -u ( Im `  A
) )  =  ( abs `  1 ) )
5251ex 115 . . . 4  |-  ( A  e.  CC  ->  (
( ( exp `  (
_i  x.  ( Re `  A ) ) )  x.  ( exp `  -u (
Im `  A )
) )  =  1  ->  ( exp `  -u (
Im `  A )
)  =  ( abs `  1 ) ) )
5331, 52sylbid 150 . . 3  |-  ( A  e.  CC  ->  (
( exp `  (
_i  x.  A )
)  =  1  -> 
( exp `  -u (
Im `  A )
)  =  ( abs `  1 ) ) )
547negeq0d 8274 . . . 4  |-  ( A  e.  CC  ->  (
( Im `  A
)  =  0  <->  -u (
Im `  A )  =  0 ) )
55 reim0b 10885 . . . 4  |-  ( A  e.  CC  ->  ( A  e.  RR  <->  ( Im `  A )  =  0 ) )
56 ef0 11694 . . . . . . 7  |-  ( exp `  0 )  =  1
57 abs1 11095 . . . . . . 7  |-  ( abs `  1 )  =  1
5856, 57eqtr4i 2211 . . . . . 6  |-  ( exp `  0 )  =  ( abs `  1
)
5958eqeq2i 2198 . . . . 5  |-  ( ( exp `  -u (
Im `  A )
)  =  ( exp `  0 )  <->  ( exp `  -u ( Im `  A
) )  =  ( abs `  1 ) )
60 reef11 11721 . . . . . 6  |-  ( (
-u ( Im `  A )  e.  RR  /\  0  e.  RR )  ->  ( ( exp `  -u ( Im `  A ) )  =  ( exp `  0
)  <->  -u ( Im `  A )  =  0 ) )
6126, 42, 60sylancl 413 . . . . 5  |-  ( A  e.  CC  ->  (
( exp `  -u (
Im `  A )
)  =  ( exp `  0 )  <->  -u ( Im
`  A )  =  0 ) )
6259, 61bitr3id 194 . . . 4  |-  ( A  e.  CC  ->  (
( exp `  -u (
Im `  A )
)  =  ( abs `  1 )  <->  -u ( Im
`  A )  =  0 ) )
6354, 55, 623bitr4rd 221 . . 3  |-  ( A  e.  CC  ->  (
( exp `  -u (
Im `  A )
)  =  ( abs `  1 )  <->  A  e.  RR ) )
6453, 63sylibd 149 . 2  |-  ( A  e.  CC  ->  (
( exp `  (
_i  x.  A )
)  =  1  ->  A  e.  RR )
)
6564imp 124 1  |-  ( ( A  e.  CC  /\  ( exp `  ( _i  x.  A ) )  =  1 )  ->  A  e.  RR )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105    = wceq 1363    e. wcel 2158   class class class wbr 4015   ` cfv 5228  (class class class)co 5888   CCcc 7823   RRcr 7824   0cc0 7825   1c1 7826   _ici 7827    + caddc 7828    x. cmul 7830    < clt 8006    <_ cle 8007   -ucneg 8143   Recre 10863   Imcim 10864   abscabs 11020   expce 11664
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1457  ax-7 1458  ax-gen 1459  ax-ie1 1503  ax-ie2 1504  ax-8 1514  ax-10 1515  ax-11 1516  ax-i12 1517  ax-bndl 1519  ax-4 1520  ax-17 1536  ax-i9 1540  ax-ial 1544  ax-i5r 1545  ax-13 2160  ax-14 2161  ax-ext 2169  ax-coll 4130  ax-sep 4133  ax-nul 4141  ax-pow 4186  ax-pr 4221  ax-un 4445  ax-setind 4548  ax-iinf 4599  ax-cnex 7916  ax-resscn 7917  ax-1cn 7918  ax-1re 7919  ax-icn 7920  ax-addcl 7921  ax-addrcl 7922  ax-mulcl 7923  ax-mulrcl 7924  ax-addcom 7925  ax-mulcom 7926  ax-addass 7927  ax-mulass 7928  ax-distr 7929  ax-i2m1 7930  ax-0lt1 7931  ax-1rid 7932  ax-0id 7933  ax-rnegex 7934  ax-precex 7935  ax-cnre 7936  ax-pre-ltirr 7937  ax-pre-ltwlin 7938  ax-pre-lttrn 7939  ax-pre-apti 7940  ax-pre-ltadd 7941  ax-pre-mulgt0 7942  ax-pre-mulext 7943  ax-arch 7944  ax-caucvg 7945
This theorem depends on definitions:  df-bi 117  df-dc 836  df-3or 980  df-3an 981  df-tru 1366  df-fal 1369  df-nf 1471  df-sb 1773  df-eu 2039  df-mo 2040  df-clab 2174  df-cleq 2180  df-clel 2183  df-nfc 2318  df-ne 2358  df-nel 2453  df-ral 2470  df-rex 2471  df-reu 2472  df-rmo 2473  df-rab 2474  df-v 2751  df-sbc 2975  df-csb 3070  df-dif 3143  df-un 3145  df-in 3147  df-ss 3154  df-nul 3435  df-if 3547  df-pw 3589  df-sn 3610  df-pr 3611  df-op 3613  df-uni 3822  df-int 3857  df-iun 3900  df-disj 3993  df-br 4016  df-opab 4077  df-mpt 4078  df-tr 4114  df-id 4305  df-po 4308  df-iso 4309  df-iord 4378  df-on 4380  df-ilim 4381  df-suc 4383  df-iom 4602  df-xp 4644  df-rel 4645  df-cnv 4646  df-co 4647  df-dm 4648  df-rn 4649  df-res 4650  df-ima 4651  df-iota 5190  df-fun 5230  df-fn 5231  df-f 5232  df-f1 5233  df-fo 5234  df-f1o 5235  df-fv 5236  df-isom 5237  df-riota 5844  df-ov 5891  df-oprab 5892  df-mpo 5893  df-1st 6155  df-2nd 6156  df-recs 6320  df-irdg 6385  df-frec 6406  df-1o 6431  df-oadd 6435  df-er 6549  df-en 6755  df-dom 6756  df-fin 6757  df-sup 6997  df-pnf 8008  df-mnf 8009  df-xr 8010  df-ltxr 8011  df-le 8012  df-sub 8144  df-neg 8145  df-reap 8546  df-ap 8553  df-div 8644  df-inn 8934  df-2 8992  df-3 8993  df-4 8994  df-n0 9191  df-z 9268  df-uz 9543  df-q 9634  df-rp 9668  df-ico 9908  df-fz 10023  df-fzo 10157  df-seqfrec 10460  df-exp 10534  df-fac 10720  df-bc 10742  df-ihash 10770  df-cj 10865  df-re 10866  df-im 10867  df-rsqrt 11021  df-abs 11022  df-clim 11301  df-sumdc 11376  df-ef 11670  df-sin 11672  df-cos 11673
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator