| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > efieq1re | Unicode version | ||
| Description: A number whose imaginary exponential is one is real. (Contributed by NM, 21-Aug-2008.) |
| Ref | Expression |
|---|---|
| efieq1re |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | replim 11285 |
. . . . . . . . 9
| |
| 2 | 1 | oveq2d 5983 |
. . . . . . . 8
|
| 3 | recl 11279 |
. . . . . . . . . . 11
| |
| 4 | 3 | recnd 8136 |
. . . . . . . . . 10
|
| 5 | ax-icn 8055 |
. . . . . . . . . . 11
| |
| 6 | imcl 11280 |
. . . . . . . . . . . 12
| |
| 7 | 6 | recnd 8136 |
. . . . . . . . . . 11
|
| 8 | mulcl 8087 |
. . . . . . . . . . 11
| |
| 9 | 5, 7, 8 | sylancr 414 |
. . . . . . . . . 10
|
| 10 | adddi 8092 |
. . . . . . . . . . 11
| |
| 11 | 5, 10 | mp3an1 1337 |
. . . . . . . . . 10
|
| 12 | 4, 9, 11 | syl2anc 411 |
. . . . . . . . 9
|
| 13 | ixi 8691 |
. . . . . . . . . . . 12
| |
| 14 | 13 | oveq1i 5977 |
. . . . . . . . . . 11
|
| 15 | mulass 8091 |
. . . . . . . . . . . . 13
| |
| 16 | 5, 5, 15 | mp3an12 1340 |
. . . . . . . . . . . 12
|
| 17 | 7, 16 | syl 14 |
. . . . . . . . . . 11
|
| 18 | 7 | mulm1d 8517 |
. . . . . . . . . . 11
|
| 19 | 14, 17, 18 | 3eqtr3a 2264 |
. . . . . . . . . 10
|
| 20 | 19 | oveq2d 5983 |
. . . . . . . . 9
|
| 21 | 12, 20 | eqtrd 2240 |
. . . . . . . 8
|
| 22 | 2, 21 | eqtrd 2240 |
. . . . . . 7
|
| 23 | 22 | fveq2d 5603 |
. . . . . 6
|
| 24 | mulcl 8087 |
. . . . . . . 8
| |
| 25 | 5, 4, 24 | sylancr 414 |
. . . . . . 7
|
| 26 | 6 | renegcld 8487 |
. . . . . . . 8
|
| 27 | 26 | recnd 8136 |
. . . . . . 7
|
| 28 | efadd 12101 |
. . . . . . 7
| |
| 29 | 25, 27, 28 | syl2anc 411 |
. . . . . 6
|
| 30 | 23, 29 | eqtrd 2240 |
. . . . 5
|
| 31 | 30 | eqeq1d 2216 |
. . . 4
|
| 32 | efcl 12090 |
. . . . . . . . 9
| |
| 33 | 25, 32 | syl 14 |
. . . . . . . 8
|
| 34 | efcl 12090 |
. . . . . . . . 9
| |
| 35 | 27, 34 | syl 14 |
. . . . . . . 8
|
| 36 | 33, 35 | absmuld 11620 |
. . . . . . 7
|
| 37 | absefi 12195 |
. . . . . . . . 9
| |
| 38 | 3, 37 | syl 14 |
. . . . . . . 8
|
| 39 | 26 | reefcld 12095 |
. . . . . . . . 9
|
| 40 | efgt0 12110 |
. . . . . . . . . . 11
| |
| 41 | 26, 40 | syl 14 |
. . . . . . . . . 10
|
| 42 | 0re 8107 |
. . . . . . . . . . 11
| |
| 43 | ltle 8195 |
. . . . . . . . . . 11
| |
| 44 | 42, 43 | mpan 424 |
. . . . . . . . . 10
|
| 45 | 39, 41, 44 | sylc 62 |
. . . . . . . . 9
|
| 46 | 39, 45 | absidd 11593 |
. . . . . . . 8
|
| 47 | 38, 46 | oveq12d 5985 |
. . . . . . 7
|
| 48 | 35 | mulid2d 8126 |
. . . . . . 7
|
| 49 | 36, 47, 48 | 3eqtrrd 2245 |
. . . . . 6
|
| 50 | fveq2 5599 |
. . . . . 6
| |
| 51 | 49, 50 | sylan9eq 2260 |
. . . . 5
|
| 52 | 51 | ex 115 |
. . . 4
|
| 53 | 31, 52 | sylbid 150 |
. . 3
|
| 54 | 7 | negeq0d 8410 |
. . . 4
|
| 55 | reim0b 11288 |
. . . 4
| |
| 56 | ef0 12098 |
. . . . . . 7
| |
| 57 | abs1 11498 |
. . . . . . 7
| |
| 58 | 56, 57 | eqtr4i 2231 |
. . . . . 6
|
| 59 | 58 | eqeq2i 2218 |
. . . . 5
|
| 60 | reef11 12125 |
. . . . . 6
| |
| 61 | 26, 42, 60 | sylancl 413 |
. . . . 5
|
| 62 | 59, 61 | bitr3id 194 |
. . . 4
|
| 63 | 54, 55, 62 | 3bitr4rd 221 |
. . 3
|
| 64 | 53, 63 | sylibd 149 |
. 2
|
| 65 | 64 | imp 124 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-13 2180 ax-14 2181 ax-ext 2189 ax-coll 4175 ax-sep 4178 ax-nul 4186 ax-pow 4234 ax-pr 4269 ax-un 4498 ax-setind 4603 ax-iinf 4654 ax-cnex 8051 ax-resscn 8052 ax-1cn 8053 ax-1re 8054 ax-icn 8055 ax-addcl 8056 ax-addrcl 8057 ax-mulcl 8058 ax-mulrcl 8059 ax-addcom 8060 ax-mulcom 8061 ax-addass 8062 ax-mulass 8063 ax-distr 8064 ax-i2m1 8065 ax-0lt1 8066 ax-1rid 8067 ax-0id 8068 ax-rnegex 8069 ax-precex 8070 ax-cnre 8071 ax-pre-ltirr 8072 ax-pre-ltwlin 8073 ax-pre-lttrn 8074 ax-pre-apti 8075 ax-pre-ltadd 8076 ax-pre-mulgt0 8077 ax-pre-mulext 8078 ax-arch 8079 ax-caucvg 8080 |
| This theorem depends on definitions: df-bi 117 df-dc 837 df-3or 982 df-3an 983 df-tru 1376 df-fal 1379 df-nf 1485 df-sb 1787 df-eu 2058 df-mo 2059 df-clab 2194 df-cleq 2200 df-clel 2203 df-nfc 2339 df-ne 2379 df-nel 2474 df-ral 2491 df-rex 2492 df-reu 2493 df-rmo 2494 df-rab 2495 df-v 2778 df-sbc 3006 df-csb 3102 df-dif 3176 df-un 3178 df-in 3180 df-ss 3187 df-nul 3469 df-if 3580 df-pw 3628 df-sn 3649 df-pr 3650 df-op 3652 df-uni 3865 df-int 3900 df-iun 3943 df-disj 4036 df-br 4060 df-opab 4122 df-mpt 4123 df-tr 4159 df-id 4358 df-po 4361 df-iso 4362 df-iord 4431 df-on 4433 df-ilim 4434 df-suc 4436 df-iom 4657 df-xp 4699 df-rel 4700 df-cnv 4701 df-co 4702 df-dm 4703 df-rn 4704 df-res 4705 df-ima 4706 df-iota 5251 df-fun 5292 df-fn 5293 df-f 5294 df-f1 5295 df-fo 5296 df-f1o 5297 df-fv 5298 df-isom 5299 df-riota 5922 df-ov 5970 df-oprab 5971 df-mpo 5972 df-1st 6249 df-2nd 6250 df-recs 6414 df-irdg 6479 df-frec 6500 df-1o 6525 df-oadd 6529 df-er 6643 df-en 6851 df-dom 6852 df-fin 6853 df-sup 7112 df-pnf 8144 df-mnf 8145 df-xr 8146 df-ltxr 8147 df-le 8148 df-sub 8280 df-neg 8281 df-reap 8683 df-ap 8690 df-div 8781 df-inn 9072 df-2 9130 df-3 9131 df-4 9132 df-n0 9331 df-z 9408 df-uz 9684 df-q 9776 df-rp 9811 df-ico 10051 df-fz 10166 df-fzo 10300 df-seqfrec 10630 df-exp 10721 df-fac 10908 df-bc 10930 df-ihash 10958 df-cj 11268 df-re 11269 df-im 11270 df-rsqrt 11424 df-abs 11425 df-clim 11705 df-sumdc 11780 df-ef 12074 df-sin 12076 df-cos 12077 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |