ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  efieq1re Unicode version

Theorem efieq1re 11939
Description: A number whose imaginary exponential is one is real. (Contributed by NM, 21-Aug-2008.)
Assertion
Ref Expression
efieq1re  |-  ( ( A  e.  CC  /\  ( exp `  ( _i  x.  A ) )  =  1 )  ->  A  e.  RR )

Proof of Theorem efieq1re
StepHypRef Expression
1 replim 11026 . . . . . . . . 9  |-  ( A  e.  CC  ->  A  =  ( ( Re
`  A )  +  ( _i  x.  (
Im `  A )
) ) )
21oveq2d 5939 . . . . . . . 8  |-  ( A  e.  CC  ->  (
_i  x.  A )  =  ( _i  x.  ( ( Re `  A )  +  ( _i  x.  ( Im
`  A ) ) ) ) )
3 recl 11020 . . . . . . . . . . 11  |-  ( A  e.  CC  ->  (
Re `  A )  e.  RR )
43recnd 8057 . . . . . . . . . 10  |-  ( A  e.  CC  ->  (
Re `  A )  e.  CC )
5 ax-icn 7976 . . . . . . . . . . 11  |-  _i  e.  CC
6 imcl 11021 . . . . . . . . . . . 12  |-  ( A  e.  CC  ->  (
Im `  A )  e.  RR )
76recnd 8057 . . . . . . . . . . 11  |-  ( A  e.  CC  ->  (
Im `  A )  e.  CC )
8 mulcl 8008 . . . . . . . . . . 11  |-  ( ( _i  e.  CC  /\  ( Im `  A )  e.  CC )  -> 
( _i  x.  (
Im `  A )
)  e.  CC )
95, 7, 8sylancr 414 . . . . . . . . . 10  |-  ( A  e.  CC  ->  (
_i  x.  ( Im `  A ) )  e.  CC )
10 adddi 8013 . . . . . . . . . . 11  |-  ( ( _i  e.  CC  /\  ( Re `  A )  e.  CC  /\  (
_i  x.  ( Im `  A ) )  e.  CC )  ->  (
_i  x.  ( (
Re `  A )  +  ( _i  x.  ( Im `  A ) ) ) )  =  ( ( _i  x.  ( Re `  A ) )  +  ( _i  x.  ( _i  x.  ( Im `  A ) ) ) ) )
115, 10mp3an1 1335 . . . . . . . . . 10  |-  ( ( ( Re `  A
)  e.  CC  /\  ( _i  x.  (
Im `  A )
)  e.  CC )  ->  ( _i  x.  ( ( Re `  A )  +  ( _i  x.  ( Im
`  A ) ) ) )  =  ( ( _i  x.  (
Re `  A )
)  +  ( _i  x.  ( _i  x.  ( Im `  A ) ) ) ) )
124, 9, 11syl2anc 411 . . . . . . . . 9  |-  ( A  e.  CC  ->  (
_i  x.  ( (
Re `  A )  +  ( _i  x.  ( Im `  A ) ) ) )  =  ( ( _i  x.  ( Re `  A ) )  +  ( _i  x.  ( _i  x.  ( Im `  A ) ) ) ) )
13 ixi 8612 . . . . . . . . . . . 12  |-  ( _i  x.  _i )  = 
-u 1
1413oveq1i 5933 . . . . . . . . . . 11  |-  ( ( _i  x.  _i )  x.  ( Im `  A ) )  =  ( -u 1  x.  ( Im `  A
) )
15 mulass 8012 . . . . . . . . . . . . 13  |-  ( ( _i  e.  CC  /\  _i  e.  CC  /\  (
Im `  A )  e.  CC )  ->  (
( _i  x.  _i )  x.  ( Im `  A ) )  =  ( _i  x.  (
_i  x.  ( Im `  A ) ) ) )
165, 5, 15mp3an12 1338 . . . . . . . . . . . 12  |-  ( ( Im `  A )  e.  CC  ->  (
( _i  x.  _i )  x.  ( Im `  A ) )  =  ( _i  x.  (
_i  x.  ( Im `  A ) ) ) )
177, 16syl 14 . . . . . . . . . . 11  |-  ( A  e.  CC  ->  (
( _i  x.  _i )  x.  ( Im `  A ) )  =  ( _i  x.  (
_i  x.  ( Im `  A ) ) ) )
187mulm1d 8438 . . . . . . . . . . 11  |-  ( A  e.  CC  ->  ( -u 1  x.  ( Im
`  A ) )  =  -u ( Im `  A ) )
1914, 17, 183eqtr3a 2253 . . . . . . . . . 10  |-  ( A  e.  CC  ->  (
_i  x.  ( _i  x.  ( Im `  A
) ) )  = 
-u ( Im `  A ) )
2019oveq2d 5939 . . . . . . . . 9  |-  ( A  e.  CC  ->  (
( _i  x.  (
Re `  A )
)  +  ( _i  x.  ( _i  x.  ( Im `  A ) ) ) )  =  ( ( _i  x.  ( Re `  A ) )  +  -u (
Im `  A )
) )
2112, 20eqtrd 2229 . . . . . . . 8  |-  ( A  e.  CC  ->  (
_i  x.  ( (
Re `  A )  +  ( _i  x.  ( Im `  A ) ) ) )  =  ( ( _i  x.  ( Re `  A ) )  +  -u (
Im `  A )
) )
222, 21eqtrd 2229 . . . . . . 7  |-  ( A  e.  CC  ->  (
_i  x.  A )  =  ( ( _i  x.  ( Re `  A ) )  + 
-u ( Im `  A ) ) )
2322fveq2d 5563 . . . . . 6  |-  ( A  e.  CC  ->  ( exp `  ( _i  x.  A ) )  =  ( exp `  (
( _i  x.  (
Re `  A )
)  +  -u (
Im `  A )
) ) )
24 mulcl 8008 . . . . . . . 8  |-  ( ( _i  e.  CC  /\  ( Re `  A )  e.  CC )  -> 
( _i  x.  (
Re `  A )
)  e.  CC )
255, 4, 24sylancr 414 . . . . . . 7  |-  ( A  e.  CC  ->  (
_i  x.  ( Re `  A ) )  e.  CC )
266renegcld 8408 . . . . . . . 8  |-  ( A  e.  CC  ->  -u (
Im `  A )  e.  RR )
2726recnd 8057 . . . . . . 7  |-  ( A  e.  CC  ->  -u (
Im `  A )  e.  CC )
28 efadd 11842 . . . . . . 7  |-  ( ( ( _i  x.  (
Re `  A )
)  e.  CC  /\  -u ( Im `  A
)  e.  CC )  ->  ( exp `  (
( _i  x.  (
Re `  A )
)  +  -u (
Im `  A )
) )  =  ( ( exp `  (
_i  x.  ( Re `  A ) ) )  x.  ( exp `  -u (
Im `  A )
) ) )
2925, 27, 28syl2anc 411 . . . . . 6  |-  ( A  e.  CC  ->  ( exp `  ( ( _i  x.  ( Re `  A ) )  + 
-u ( Im `  A ) ) )  =  ( ( exp `  ( _i  x.  (
Re `  A )
) )  x.  ( exp `  -u ( Im `  A ) ) ) )
3023, 29eqtrd 2229 . . . . 5  |-  ( A  e.  CC  ->  ( exp `  ( _i  x.  A ) )  =  ( ( exp `  (
_i  x.  ( Re `  A ) ) )  x.  ( exp `  -u (
Im `  A )
) ) )
3130eqeq1d 2205 . . . 4  |-  ( A  e.  CC  ->  (
( exp `  (
_i  x.  A )
)  =  1  <->  (
( exp `  (
_i  x.  ( Re `  A ) ) )  x.  ( exp `  -u (
Im `  A )
) )  =  1 ) )
32 efcl 11831 . . . . . . . . 9  |-  ( ( _i  x.  ( Re
`  A ) )  e.  CC  ->  ( exp `  ( _i  x.  ( Re `  A ) ) )  e.  CC )
3325, 32syl 14 . . . . . . . 8  |-  ( A  e.  CC  ->  ( exp `  ( _i  x.  ( Re `  A ) ) )  e.  CC )
34 efcl 11831 . . . . . . . . 9  |-  ( -u ( Im `  A )  e.  CC  ->  ( exp `  -u ( Im `  A ) )  e.  CC )
3527, 34syl 14 . . . . . . . 8  |-  ( A  e.  CC  ->  ( exp `  -u ( Im `  A ) )  e.  CC )
3633, 35absmuld 11361 . . . . . . 7  |-  ( A  e.  CC  ->  ( abs `  ( ( exp `  ( _i  x.  (
Re `  A )
) )  x.  ( exp `  -u ( Im `  A ) ) ) )  =  ( ( abs `  ( exp `  ( _i  x.  (
Re `  A )
) ) )  x.  ( abs `  ( exp `  -u ( Im `  A ) ) ) ) )
37 absefi 11936 . . . . . . . . 9  |-  ( ( Re `  A )  e.  RR  ->  ( abs `  ( exp `  (
_i  x.  ( Re `  A ) ) ) )  =  1 )
383, 37syl 14 . . . . . . . 8  |-  ( A  e.  CC  ->  ( abs `  ( exp `  (
_i  x.  ( Re `  A ) ) ) )  =  1 )
3926reefcld 11836 . . . . . . . . 9  |-  ( A  e.  CC  ->  ( exp `  -u ( Im `  A ) )  e.  RR )
40 efgt0 11851 . . . . . . . . . . 11  |-  ( -u ( Im `  A )  e.  RR  ->  0  <  ( exp `  -u (
Im `  A )
) )
4126, 40syl 14 . . . . . . . . . 10  |-  ( A  e.  CC  ->  0  <  ( exp `  -u (
Im `  A )
) )
42 0re 8028 . . . . . . . . . . 11  |-  0  e.  RR
43 ltle 8116 . . . . . . . . . . 11  |-  ( ( 0  e.  RR  /\  ( exp `  -u (
Im `  A )
)  e.  RR )  ->  ( 0  < 
( exp `  -u (
Im `  A )
)  ->  0  <_  ( exp `  -u (
Im `  A )
) ) )
4442, 43mpan 424 . . . . . . . . . 10  |-  ( ( exp `  -u (
Im `  A )
)  e.  RR  ->  ( 0  <  ( exp `  -u ( Im `  A ) )  -> 
0  <_  ( exp `  -u ( Im `  A
) ) ) )
4539, 41, 44sylc 62 . . . . . . . . 9  |-  ( A  e.  CC  ->  0  <_  ( exp `  -u (
Im `  A )
) )
4639, 45absidd 11334 . . . . . . . 8  |-  ( A  e.  CC  ->  ( abs `  ( exp `  -u (
Im `  A )
) )  =  ( exp `  -u (
Im `  A )
) )
4738, 46oveq12d 5941 . . . . . . 7  |-  ( A  e.  CC  ->  (
( abs `  ( exp `  ( _i  x.  ( Re `  A ) ) ) )  x.  ( abs `  ( exp `  -u ( Im `  A ) ) ) )  =  ( 1  x.  ( exp `  -u (
Im `  A )
) ) )
4835mulid2d 8047 . . . . . . 7  |-  ( A  e.  CC  ->  (
1  x.  ( exp `  -u ( Im `  A ) ) )  =  ( exp `  -u (
Im `  A )
) )
4936, 47, 483eqtrrd 2234 . . . . . 6  |-  ( A  e.  CC  ->  ( exp `  -u ( Im `  A ) )  =  ( abs `  (
( exp `  (
_i  x.  ( Re `  A ) ) )  x.  ( exp `  -u (
Im `  A )
) ) ) )
50 fveq2 5559 . . . . . 6  |-  ( ( ( exp `  (
_i  x.  ( Re `  A ) ) )  x.  ( exp `  -u (
Im `  A )
) )  =  1  ->  ( abs `  (
( exp `  (
_i  x.  ( Re `  A ) ) )  x.  ( exp `  -u (
Im `  A )
) ) )  =  ( abs `  1
) )
5149, 50sylan9eq 2249 . . . . 5  |-  ( ( A  e.  CC  /\  ( ( exp `  (
_i  x.  ( Re `  A ) ) )  x.  ( exp `  -u (
Im `  A )
) )  =  1 )  ->  ( exp `  -u ( Im `  A
) )  =  ( abs `  1 ) )
5251ex 115 . . . 4  |-  ( A  e.  CC  ->  (
( ( exp `  (
_i  x.  ( Re `  A ) ) )  x.  ( exp `  -u (
Im `  A )
) )  =  1  ->  ( exp `  -u (
Im `  A )
)  =  ( abs `  1 ) ) )
5331, 52sylbid 150 . . 3  |-  ( A  e.  CC  ->  (
( exp `  (
_i  x.  A )
)  =  1  -> 
( exp `  -u (
Im `  A )
)  =  ( abs `  1 ) ) )
547negeq0d 8331 . . . 4  |-  ( A  e.  CC  ->  (
( Im `  A
)  =  0  <->  -u (
Im `  A )  =  0 ) )
55 reim0b 11029 . . . 4  |-  ( A  e.  CC  ->  ( A  e.  RR  <->  ( Im `  A )  =  0 ) )
56 ef0 11839 . . . . . . 7  |-  ( exp `  0 )  =  1
57 abs1 11239 . . . . . . 7  |-  ( abs `  1 )  =  1
5856, 57eqtr4i 2220 . . . . . 6  |-  ( exp `  0 )  =  ( abs `  1
)
5958eqeq2i 2207 . . . . 5  |-  ( ( exp `  -u (
Im `  A )
)  =  ( exp `  0 )  <->  ( exp `  -u ( Im `  A
) )  =  ( abs `  1 ) )
60 reef11 11866 . . . . . 6  |-  ( (
-u ( Im `  A )  e.  RR  /\  0  e.  RR )  ->  ( ( exp `  -u ( Im `  A ) )  =  ( exp `  0
)  <->  -u ( Im `  A )  =  0 ) )
6126, 42, 60sylancl 413 . . . . 5  |-  ( A  e.  CC  ->  (
( exp `  -u (
Im `  A )
)  =  ( exp `  0 )  <->  -u ( Im
`  A )  =  0 ) )
6259, 61bitr3id 194 . . . 4  |-  ( A  e.  CC  ->  (
( exp `  -u (
Im `  A )
)  =  ( abs `  1 )  <->  -u ( Im
`  A )  =  0 ) )
6354, 55, 623bitr4rd 221 . . 3  |-  ( A  e.  CC  ->  (
( exp `  -u (
Im `  A )
)  =  ( abs `  1 )  <->  A  e.  RR ) )
6453, 63sylibd 149 . 2  |-  ( A  e.  CC  ->  (
( exp `  (
_i  x.  A )
)  =  1  ->  A  e.  RR )
)
6564imp 124 1  |-  ( ( A  e.  CC  /\  ( exp `  ( _i  x.  A ) )  =  1 )  ->  A  e.  RR )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105    = wceq 1364    e. wcel 2167   class class class wbr 4034   ` cfv 5259  (class class class)co 5923   CCcc 7879   RRcr 7880   0cc0 7881   1c1 7882   _ici 7883    + caddc 7884    x. cmul 7886    < clt 8063    <_ cle 8064   -ucneg 8200   Recre 11007   Imcim 11008   abscabs 11164   expce 11809
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-13 2169  ax-14 2170  ax-ext 2178  ax-coll 4149  ax-sep 4152  ax-nul 4160  ax-pow 4208  ax-pr 4243  ax-un 4469  ax-setind 4574  ax-iinf 4625  ax-cnex 7972  ax-resscn 7973  ax-1cn 7974  ax-1re 7975  ax-icn 7976  ax-addcl 7977  ax-addrcl 7978  ax-mulcl 7979  ax-mulrcl 7980  ax-addcom 7981  ax-mulcom 7982  ax-addass 7983  ax-mulass 7984  ax-distr 7985  ax-i2m1 7986  ax-0lt1 7987  ax-1rid 7988  ax-0id 7989  ax-rnegex 7990  ax-precex 7991  ax-cnre 7992  ax-pre-ltirr 7993  ax-pre-ltwlin 7994  ax-pre-lttrn 7995  ax-pre-apti 7996  ax-pre-ltadd 7997  ax-pre-mulgt0 7998  ax-pre-mulext 7999  ax-arch 8000  ax-caucvg 8001
This theorem depends on definitions:  df-bi 117  df-dc 836  df-3or 981  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1475  df-sb 1777  df-eu 2048  df-mo 2049  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ne 2368  df-nel 2463  df-ral 2480  df-rex 2481  df-reu 2482  df-rmo 2483  df-rab 2484  df-v 2765  df-sbc 2990  df-csb 3085  df-dif 3159  df-un 3161  df-in 3163  df-ss 3170  df-nul 3452  df-if 3563  df-pw 3608  df-sn 3629  df-pr 3630  df-op 3632  df-uni 3841  df-int 3876  df-iun 3919  df-disj 4012  df-br 4035  df-opab 4096  df-mpt 4097  df-tr 4133  df-id 4329  df-po 4332  df-iso 4333  df-iord 4402  df-on 4404  df-ilim 4405  df-suc 4407  df-iom 4628  df-xp 4670  df-rel 4671  df-cnv 4672  df-co 4673  df-dm 4674  df-rn 4675  df-res 4676  df-ima 4677  df-iota 5220  df-fun 5261  df-fn 5262  df-f 5263  df-f1 5264  df-fo 5265  df-f1o 5266  df-fv 5267  df-isom 5268  df-riota 5878  df-ov 5926  df-oprab 5927  df-mpo 5928  df-1st 6199  df-2nd 6200  df-recs 6364  df-irdg 6429  df-frec 6450  df-1o 6475  df-oadd 6479  df-er 6593  df-en 6801  df-dom 6802  df-fin 6803  df-sup 7051  df-pnf 8065  df-mnf 8066  df-xr 8067  df-ltxr 8068  df-le 8069  df-sub 8201  df-neg 8202  df-reap 8604  df-ap 8611  df-div 8702  df-inn 8993  df-2 9051  df-3 9052  df-4 9053  df-n0 9252  df-z 9329  df-uz 9604  df-q 9696  df-rp 9731  df-ico 9971  df-fz 10086  df-fzo 10220  df-seqfrec 10542  df-exp 10633  df-fac 10820  df-bc 10842  df-ihash 10870  df-cj 11009  df-re 11010  df-im 11011  df-rsqrt 11165  df-abs 11166  df-clim 11446  df-sumdc 11521  df-ef 11815  df-sin 11817  df-cos 11818
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator