ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  efieq1re Unicode version

Theorem efieq1re 11763
Description: A number whose imaginary exponential is one is real. (Contributed by NM, 21-Aug-2008.)
Assertion
Ref Expression
efieq1re  |-  ( ( A  e.  CC  /\  ( exp `  ( _i  x.  A ) )  =  1 )  ->  A  e.  RR )

Proof of Theorem efieq1re
StepHypRef Expression
1 replim 10852 . . . . . . . . 9  |-  ( A  e.  CC  ->  A  =  ( ( Re
`  A )  +  ( _i  x.  (
Im `  A )
) ) )
21oveq2d 5885 . . . . . . . 8  |-  ( A  e.  CC  ->  (
_i  x.  A )  =  ( _i  x.  ( ( Re `  A )  +  ( _i  x.  ( Im
`  A ) ) ) ) )
3 recl 10846 . . . . . . . . . . 11  |-  ( A  e.  CC  ->  (
Re `  A )  e.  RR )
43recnd 7976 . . . . . . . . . 10  |-  ( A  e.  CC  ->  (
Re `  A )  e.  CC )
5 ax-icn 7897 . . . . . . . . . . 11  |-  _i  e.  CC
6 imcl 10847 . . . . . . . . . . . 12  |-  ( A  e.  CC  ->  (
Im `  A )  e.  RR )
76recnd 7976 . . . . . . . . . . 11  |-  ( A  e.  CC  ->  (
Im `  A )  e.  CC )
8 mulcl 7929 . . . . . . . . . . 11  |-  ( ( _i  e.  CC  /\  ( Im `  A )  e.  CC )  -> 
( _i  x.  (
Im `  A )
)  e.  CC )
95, 7, 8sylancr 414 . . . . . . . . . 10  |-  ( A  e.  CC  ->  (
_i  x.  ( Im `  A ) )  e.  CC )
10 adddi 7934 . . . . . . . . . . 11  |-  ( ( _i  e.  CC  /\  ( Re `  A )  e.  CC  /\  (
_i  x.  ( Im `  A ) )  e.  CC )  ->  (
_i  x.  ( (
Re `  A )  +  ( _i  x.  ( Im `  A ) ) ) )  =  ( ( _i  x.  ( Re `  A ) )  +  ( _i  x.  ( _i  x.  ( Im `  A ) ) ) ) )
115, 10mp3an1 1324 . . . . . . . . . 10  |-  ( ( ( Re `  A
)  e.  CC  /\  ( _i  x.  (
Im `  A )
)  e.  CC )  ->  ( _i  x.  ( ( Re `  A )  +  ( _i  x.  ( Im
`  A ) ) ) )  =  ( ( _i  x.  (
Re `  A )
)  +  ( _i  x.  ( _i  x.  ( Im `  A ) ) ) ) )
124, 9, 11syl2anc 411 . . . . . . . . 9  |-  ( A  e.  CC  ->  (
_i  x.  ( (
Re `  A )  +  ( _i  x.  ( Im `  A ) ) ) )  =  ( ( _i  x.  ( Re `  A ) )  +  ( _i  x.  ( _i  x.  ( Im `  A ) ) ) ) )
13 ixi 8530 . . . . . . . . . . . 12  |-  ( _i  x.  _i )  = 
-u 1
1413oveq1i 5879 . . . . . . . . . . 11  |-  ( ( _i  x.  _i )  x.  ( Im `  A ) )  =  ( -u 1  x.  ( Im `  A
) )
15 mulass 7933 . . . . . . . . . . . . 13  |-  ( ( _i  e.  CC  /\  _i  e.  CC  /\  (
Im `  A )  e.  CC )  ->  (
( _i  x.  _i )  x.  ( Im `  A ) )  =  ( _i  x.  (
_i  x.  ( Im `  A ) ) ) )
165, 5, 15mp3an12 1327 . . . . . . . . . . . 12  |-  ( ( Im `  A )  e.  CC  ->  (
( _i  x.  _i )  x.  ( Im `  A ) )  =  ( _i  x.  (
_i  x.  ( Im `  A ) ) ) )
177, 16syl 14 . . . . . . . . . . 11  |-  ( A  e.  CC  ->  (
( _i  x.  _i )  x.  ( Im `  A ) )  =  ( _i  x.  (
_i  x.  ( Im `  A ) ) ) )
187mulm1d 8357 . . . . . . . . . . 11  |-  ( A  e.  CC  ->  ( -u 1  x.  ( Im
`  A ) )  =  -u ( Im `  A ) )
1914, 17, 183eqtr3a 2234 . . . . . . . . . 10  |-  ( A  e.  CC  ->  (
_i  x.  ( _i  x.  ( Im `  A
) ) )  = 
-u ( Im `  A ) )
2019oveq2d 5885 . . . . . . . . 9  |-  ( A  e.  CC  ->  (
( _i  x.  (
Re `  A )
)  +  ( _i  x.  ( _i  x.  ( Im `  A ) ) ) )  =  ( ( _i  x.  ( Re `  A ) )  +  -u (
Im `  A )
) )
2112, 20eqtrd 2210 . . . . . . . 8  |-  ( A  e.  CC  ->  (
_i  x.  ( (
Re `  A )  +  ( _i  x.  ( Im `  A ) ) ) )  =  ( ( _i  x.  ( Re `  A ) )  +  -u (
Im `  A )
) )
222, 21eqtrd 2210 . . . . . . 7  |-  ( A  e.  CC  ->  (
_i  x.  A )  =  ( ( _i  x.  ( Re `  A ) )  + 
-u ( Im `  A ) ) )
2322fveq2d 5515 . . . . . 6  |-  ( A  e.  CC  ->  ( exp `  ( _i  x.  A ) )  =  ( exp `  (
( _i  x.  (
Re `  A )
)  +  -u (
Im `  A )
) ) )
24 mulcl 7929 . . . . . . . 8  |-  ( ( _i  e.  CC  /\  ( Re `  A )  e.  CC )  -> 
( _i  x.  (
Re `  A )
)  e.  CC )
255, 4, 24sylancr 414 . . . . . . 7  |-  ( A  e.  CC  ->  (
_i  x.  ( Re `  A ) )  e.  CC )
266renegcld 8327 . . . . . . . 8  |-  ( A  e.  CC  ->  -u (
Im `  A )  e.  RR )
2726recnd 7976 . . . . . . 7  |-  ( A  e.  CC  ->  -u (
Im `  A )  e.  CC )
28 efadd 11667 . . . . . . 7  |-  ( ( ( _i  x.  (
Re `  A )
)  e.  CC  /\  -u ( Im `  A
)  e.  CC )  ->  ( exp `  (
( _i  x.  (
Re `  A )
)  +  -u (
Im `  A )
) )  =  ( ( exp `  (
_i  x.  ( Re `  A ) ) )  x.  ( exp `  -u (
Im `  A )
) ) )
2925, 27, 28syl2anc 411 . . . . . 6  |-  ( A  e.  CC  ->  ( exp `  ( ( _i  x.  ( Re `  A ) )  + 
-u ( Im `  A ) ) )  =  ( ( exp `  ( _i  x.  (
Re `  A )
) )  x.  ( exp `  -u ( Im `  A ) ) ) )
3023, 29eqtrd 2210 . . . . 5  |-  ( A  e.  CC  ->  ( exp `  ( _i  x.  A ) )  =  ( ( exp `  (
_i  x.  ( Re `  A ) ) )  x.  ( exp `  -u (
Im `  A )
) ) )
3130eqeq1d 2186 . . . 4  |-  ( A  e.  CC  ->  (
( exp `  (
_i  x.  A )
)  =  1  <->  (
( exp `  (
_i  x.  ( Re `  A ) ) )  x.  ( exp `  -u (
Im `  A )
) )  =  1 ) )
32 efcl 11656 . . . . . . . . 9  |-  ( ( _i  x.  ( Re
`  A ) )  e.  CC  ->  ( exp `  ( _i  x.  ( Re `  A ) ) )  e.  CC )
3325, 32syl 14 . . . . . . . 8  |-  ( A  e.  CC  ->  ( exp `  ( _i  x.  ( Re `  A ) ) )  e.  CC )
34 efcl 11656 . . . . . . . . 9  |-  ( -u ( Im `  A )  e.  CC  ->  ( exp `  -u ( Im `  A ) )  e.  CC )
3527, 34syl 14 . . . . . . . 8  |-  ( A  e.  CC  ->  ( exp `  -u ( Im `  A ) )  e.  CC )
3633, 35absmuld 11187 . . . . . . 7  |-  ( A  e.  CC  ->  ( abs `  ( ( exp `  ( _i  x.  (
Re `  A )
) )  x.  ( exp `  -u ( Im `  A ) ) ) )  =  ( ( abs `  ( exp `  ( _i  x.  (
Re `  A )
) ) )  x.  ( abs `  ( exp `  -u ( Im `  A ) ) ) ) )
37 absefi 11760 . . . . . . . . 9  |-  ( ( Re `  A )  e.  RR  ->  ( abs `  ( exp `  (
_i  x.  ( Re `  A ) ) ) )  =  1 )
383, 37syl 14 . . . . . . . 8  |-  ( A  e.  CC  ->  ( abs `  ( exp `  (
_i  x.  ( Re `  A ) ) ) )  =  1 )
3926reefcld 11661 . . . . . . . . 9  |-  ( A  e.  CC  ->  ( exp `  -u ( Im `  A ) )  e.  RR )
40 efgt0 11676 . . . . . . . . . . 11  |-  ( -u ( Im `  A )  e.  RR  ->  0  <  ( exp `  -u (
Im `  A )
) )
4126, 40syl 14 . . . . . . . . . 10  |-  ( A  e.  CC  ->  0  <  ( exp `  -u (
Im `  A )
) )
42 0re 7948 . . . . . . . . . . 11  |-  0  e.  RR
43 ltle 8035 . . . . . . . . . . 11  |-  ( ( 0  e.  RR  /\  ( exp `  -u (
Im `  A )
)  e.  RR )  ->  ( 0  < 
( exp `  -u (
Im `  A )
)  ->  0  <_  ( exp `  -u (
Im `  A )
) ) )
4442, 43mpan 424 . . . . . . . . . 10  |-  ( ( exp `  -u (
Im `  A )
)  e.  RR  ->  ( 0  <  ( exp `  -u ( Im `  A ) )  -> 
0  <_  ( exp `  -u ( Im `  A
) ) ) )
4539, 41, 44sylc 62 . . . . . . . . 9  |-  ( A  e.  CC  ->  0  <_  ( exp `  -u (
Im `  A )
) )
4639, 45absidd 11160 . . . . . . . 8  |-  ( A  e.  CC  ->  ( abs `  ( exp `  -u (
Im `  A )
) )  =  ( exp `  -u (
Im `  A )
) )
4738, 46oveq12d 5887 . . . . . . 7  |-  ( A  e.  CC  ->  (
( abs `  ( exp `  ( _i  x.  ( Re `  A ) ) ) )  x.  ( abs `  ( exp `  -u ( Im `  A ) ) ) )  =  ( 1  x.  ( exp `  -u (
Im `  A )
) ) )
4835mulid2d 7966 . . . . . . 7  |-  ( A  e.  CC  ->  (
1  x.  ( exp `  -u ( Im `  A ) ) )  =  ( exp `  -u (
Im `  A )
) )
4936, 47, 483eqtrrd 2215 . . . . . 6  |-  ( A  e.  CC  ->  ( exp `  -u ( Im `  A ) )  =  ( abs `  (
( exp `  (
_i  x.  ( Re `  A ) ) )  x.  ( exp `  -u (
Im `  A )
) ) ) )
50 fveq2 5511 . . . . . 6  |-  ( ( ( exp `  (
_i  x.  ( Re `  A ) ) )  x.  ( exp `  -u (
Im `  A )
) )  =  1  ->  ( abs `  (
( exp `  (
_i  x.  ( Re `  A ) ) )  x.  ( exp `  -u (
Im `  A )
) ) )  =  ( abs `  1
) )
5149, 50sylan9eq 2230 . . . . 5  |-  ( ( A  e.  CC  /\  ( ( exp `  (
_i  x.  ( Re `  A ) ) )  x.  ( exp `  -u (
Im `  A )
) )  =  1 )  ->  ( exp `  -u ( Im `  A
) )  =  ( abs `  1 ) )
5251ex 115 . . . 4  |-  ( A  e.  CC  ->  (
( ( exp `  (
_i  x.  ( Re `  A ) ) )  x.  ( exp `  -u (
Im `  A )
) )  =  1  ->  ( exp `  -u (
Im `  A )
)  =  ( abs `  1 ) ) )
5331, 52sylbid 150 . . 3  |-  ( A  e.  CC  ->  (
( exp `  (
_i  x.  A )
)  =  1  -> 
( exp `  -u (
Im `  A )
)  =  ( abs `  1 ) ) )
547negeq0d 8250 . . . 4  |-  ( A  e.  CC  ->  (
( Im `  A
)  =  0  <->  -u (
Im `  A )  =  0 ) )
55 reim0b 10855 . . . 4  |-  ( A  e.  CC  ->  ( A  e.  RR  <->  ( Im `  A )  =  0 ) )
56 ef0 11664 . . . . . . 7  |-  ( exp `  0 )  =  1
57 abs1 11065 . . . . . . 7  |-  ( abs `  1 )  =  1
5856, 57eqtr4i 2201 . . . . . 6  |-  ( exp `  0 )  =  ( abs `  1
)
5958eqeq2i 2188 . . . . 5  |-  ( ( exp `  -u (
Im `  A )
)  =  ( exp `  0 )  <->  ( exp `  -u ( Im `  A
) )  =  ( abs `  1 ) )
60 reef11 11691 . . . . . 6  |-  ( (
-u ( Im `  A )  e.  RR  /\  0  e.  RR )  ->  ( ( exp `  -u ( Im `  A ) )  =  ( exp `  0
)  <->  -u ( Im `  A )  =  0 ) )
6126, 42, 60sylancl 413 . . . . 5  |-  ( A  e.  CC  ->  (
( exp `  -u (
Im `  A )
)  =  ( exp `  0 )  <->  -u ( Im
`  A )  =  0 ) )
6259, 61bitr3id 194 . . . 4  |-  ( A  e.  CC  ->  (
( exp `  -u (
Im `  A )
)  =  ( abs `  1 )  <->  -u ( Im
`  A )  =  0 ) )
6354, 55, 623bitr4rd 221 . . 3  |-  ( A  e.  CC  ->  (
( exp `  -u (
Im `  A )
)  =  ( abs `  1 )  <->  A  e.  RR ) )
6453, 63sylibd 149 . 2  |-  ( A  e.  CC  ->  (
( exp `  (
_i  x.  A )
)  =  1  ->  A  e.  RR )
)
6564imp 124 1  |-  ( ( A  e.  CC  /\  ( exp `  ( _i  x.  A ) )  =  1 )  ->  A  e.  RR )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105    = wceq 1353    e. wcel 2148   class class class wbr 4000   ` cfv 5212  (class class class)co 5869   CCcc 7800   RRcr 7801   0cc0 7802   1c1 7803   _ici 7804    + caddc 7805    x. cmul 7807    < clt 7982    <_ cle 7983   -ucneg 8119   Recre 10833   Imcim 10834   abscabs 10990   expce 11634
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 614  ax-in2 615  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-13 2150  ax-14 2151  ax-ext 2159  ax-coll 4115  ax-sep 4118  ax-nul 4126  ax-pow 4171  ax-pr 4206  ax-un 4430  ax-setind 4533  ax-iinf 4584  ax-cnex 7893  ax-resscn 7894  ax-1cn 7895  ax-1re 7896  ax-icn 7897  ax-addcl 7898  ax-addrcl 7899  ax-mulcl 7900  ax-mulrcl 7901  ax-addcom 7902  ax-mulcom 7903  ax-addass 7904  ax-mulass 7905  ax-distr 7906  ax-i2m1 7907  ax-0lt1 7908  ax-1rid 7909  ax-0id 7910  ax-rnegex 7911  ax-precex 7912  ax-cnre 7913  ax-pre-ltirr 7914  ax-pre-ltwlin 7915  ax-pre-lttrn 7916  ax-pre-apti 7917  ax-pre-ltadd 7918  ax-pre-mulgt0 7919  ax-pre-mulext 7920  ax-arch 7921  ax-caucvg 7922
This theorem depends on definitions:  df-bi 117  df-dc 835  df-3or 979  df-3an 980  df-tru 1356  df-fal 1359  df-nf 1461  df-sb 1763  df-eu 2029  df-mo 2030  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-ne 2348  df-nel 2443  df-ral 2460  df-rex 2461  df-reu 2462  df-rmo 2463  df-rab 2464  df-v 2739  df-sbc 2963  df-csb 3058  df-dif 3131  df-un 3133  df-in 3135  df-ss 3142  df-nul 3423  df-if 3535  df-pw 3576  df-sn 3597  df-pr 3598  df-op 3600  df-uni 3808  df-int 3843  df-iun 3886  df-disj 3978  df-br 4001  df-opab 4062  df-mpt 4063  df-tr 4099  df-id 4290  df-po 4293  df-iso 4294  df-iord 4363  df-on 4365  df-ilim 4366  df-suc 4368  df-iom 4587  df-xp 4629  df-rel 4630  df-cnv 4631  df-co 4632  df-dm 4633  df-rn 4634  df-res 4635  df-ima 4636  df-iota 5174  df-fun 5214  df-fn 5215  df-f 5216  df-f1 5217  df-fo 5218  df-f1o 5219  df-fv 5220  df-isom 5221  df-riota 5825  df-ov 5872  df-oprab 5873  df-mpo 5874  df-1st 6135  df-2nd 6136  df-recs 6300  df-irdg 6365  df-frec 6386  df-1o 6411  df-oadd 6415  df-er 6529  df-en 6735  df-dom 6736  df-fin 6737  df-sup 6977  df-pnf 7984  df-mnf 7985  df-xr 7986  df-ltxr 7987  df-le 7988  df-sub 8120  df-neg 8121  df-reap 8522  df-ap 8529  df-div 8619  df-inn 8909  df-2 8967  df-3 8968  df-4 8969  df-n0 9166  df-z 9243  df-uz 9518  df-q 9609  df-rp 9641  df-ico 9881  df-fz 9996  df-fzo 10129  df-seqfrec 10432  df-exp 10506  df-fac 10690  df-bc 10712  df-ihash 10740  df-cj 10835  df-re 10836  df-im 10837  df-rsqrt 10991  df-abs 10992  df-clim 11271  df-sumdc 11346  df-ef 11640  df-sin 11642  df-cos 11643
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator