ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  efieq1re Unicode version

Theorem efieq1re 11122
Description: A number whose imaginary exponential is one is real. (Contributed by NM, 21-Aug-2008.)
Assertion
Ref Expression
efieq1re  |-  ( ( A  e.  CC  /\  ( exp `  ( _i  x.  A ) )  =  1 )  ->  A  e.  RR )

Proof of Theorem efieq1re
StepHypRef Expression
1 replim 10354 . . . . . . . . 9  |-  ( A  e.  CC  ->  A  =  ( ( Re
`  A )  +  ( _i  x.  (
Im `  A )
) ) )
21oveq2d 5682 . . . . . . . 8  |-  ( A  e.  CC  ->  (
_i  x.  A )  =  ( _i  x.  ( ( Re `  A )  +  ( _i  x.  ( Im
`  A ) ) ) ) )
3 recl 10348 . . . . . . . . . . 11  |-  ( A  e.  CC  ->  (
Re `  A )  e.  RR )
43recnd 7577 . . . . . . . . . 10  |-  ( A  e.  CC  ->  (
Re `  A )  e.  CC )
5 ax-icn 7501 . . . . . . . . . . 11  |-  _i  e.  CC
6 imcl 10349 . . . . . . . . . . . 12  |-  ( A  e.  CC  ->  (
Im `  A )  e.  RR )
76recnd 7577 . . . . . . . . . . 11  |-  ( A  e.  CC  ->  (
Im `  A )  e.  CC )
8 mulcl 7530 . . . . . . . . . . 11  |-  ( ( _i  e.  CC  /\  ( Im `  A )  e.  CC )  -> 
( _i  x.  (
Im `  A )
)  e.  CC )
95, 7, 8sylancr 406 . . . . . . . . . 10  |-  ( A  e.  CC  ->  (
_i  x.  ( Im `  A ) )  e.  CC )
10 adddi 7535 . . . . . . . . . . 11  |-  ( ( _i  e.  CC  /\  ( Re `  A )  e.  CC  /\  (
_i  x.  ( Im `  A ) )  e.  CC )  ->  (
_i  x.  ( (
Re `  A )  +  ( _i  x.  ( Im `  A ) ) ) )  =  ( ( _i  x.  ( Re `  A ) )  +  ( _i  x.  ( _i  x.  ( Im `  A ) ) ) ) )
115, 10mp3an1 1261 . . . . . . . . . 10  |-  ( ( ( Re `  A
)  e.  CC  /\  ( _i  x.  (
Im `  A )
)  e.  CC )  ->  ( _i  x.  ( ( Re `  A )  +  ( _i  x.  ( Im
`  A ) ) ) )  =  ( ( _i  x.  (
Re `  A )
)  +  ( _i  x.  ( _i  x.  ( Im `  A ) ) ) ) )
124, 9, 11syl2anc 404 . . . . . . . . 9  |-  ( A  e.  CC  ->  (
_i  x.  ( (
Re `  A )  +  ( _i  x.  ( Im `  A ) ) ) )  =  ( ( _i  x.  ( Re `  A ) )  +  ( _i  x.  ( _i  x.  ( Im `  A ) ) ) ) )
13 ixi 8121 . . . . . . . . . . . 12  |-  ( _i  x.  _i )  = 
-u 1
1413oveq1i 5676 . . . . . . . . . . 11  |-  ( ( _i  x.  _i )  x.  ( Im `  A ) )  =  ( -u 1  x.  ( Im `  A
) )
15 mulass 7534 . . . . . . . . . . . . 13  |-  ( ( _i  e.  CC  /\  _i  e.  CC  /\  (
Im `  A )  e.  CC )  ->  (
( _i  x.  _i )  x.  ( Im `  A ) )  =  ( _i  x.  (
_i  x.  ( Im `  A ) ) ) )
165, 5, 15mp3an12 1264 . . . . . . . . . . . 12  |-  ( ( Im `  A )  e.  CC  ->  (
( _i  x.  _i )  x.  ( Im `  A ) )  =  ( _i  x.  (
_i  x.  ( Im `  A ) ) ) )
177, 16syl 14 . . . . . . . . . . 11  |-  ( A  e.  CC  ->  (
( _i  x.  _i )  x.  ( Im `  A ) )  =  ( _i  x.  (
_i  x.  ( Im `  A ) ) ) )
187mulm1d 7949 . . . . . . . . . . 11  |-  ( A  e.  CC  ->  ( -u 1  x.  ( Im
`  A ) )  =  -u ( Im `  A ) )
1914, 17, 183eqtr3a 2145 . . . . . . . . . 10  |-  ( A  e.  CC  ->  (
_i  x.  ( _i  x.  ( Im `  A
) ) )  = 
-u ( Im `  A ) )
2019oveq2d 5682 . . . . . . . . 9  |-  ( A  e.  CC  ->  (
( _i  x.  (
Re `  A )
)  +  ( _i  x.  ( _i  x.  ( Im `  A ) ) ) )  =  ( ( _i  x.  ( Re `  A ) )  +  -u (
Im `  A )
) )
2112, 20eqtrd 2121 . . . . . . . 8  |-  ( A  e.  CC  ->  (
_i  x.  ( (
Re `  A )  +  ( _i  x.  ( Im `  A ) ) ) )  =  ( ( _i  x.  ( Re `  A ) )  +  -u (
Im `  A )
) )
222, 21eqtrd 2121 . . . . . . 7  |-  ( A  e.  CC  ->  (
_i  x.  A )  =  ( ( _i  x.  ( Re `  A ) )  + 
-u ( Im `  A ) ) )
2322fveq2d 5322 . . . . . 6  |-  ( A  e.  CC  ->  ( exp `  ( _i  x.  A ) )  =  ( exp `  (
( _i  x.  (
Re `  A )
)  +  -u (
Im `  A )
) ) )
24 mulcl 7530 . . . . . . . 8  |-  ( ( _i  e.  CC  /\  ( Re `  A )  e.  CC )  -> 
( _i  x.  (
Re `  A )
)  e.  CC )
255, 4, 24sylancr 406 . . . . . . 7  |-  ( A  e.  CC  ->  (
_i  x.  ( Re `  A ) )  e.  CC )
266renegcld 7919 . . . . . . . 8  |-  ( A  e.  CC  ->  -u (
Im `  A )  e.  RR )
2726recnd 7577 . . . . . . 7  |-  ( A  e.  CC  ->  -u (
Im `  A )  e.  CC )
28 efadd 11026 . . . . . . 7  |-  ( ( ( _i  x.  (
Re `  A )
)  e.  CC  /\  -u ( Im `  A
)  e.  CC )  ->  ( exp `  (
( _i  x.  (
Re `  A )
)  +  -u (
Im `  A )
) )  =  ( ( exp `  (
_i  x.  ( Re `  A ) ) )  x.  ( exp `  -u (
Im `  A )
) ) )
2925, 27, 28syl2anc 404 . . . . . 6  |-  ( A  e.  CC  ->  ( exp `  ( ( _i  x.  ( Re `  A ) )  + 
-u ( Im `  A ) ) )  =  ( ( exp `  ( _i  x.  (
Re `  A )
) )  x.  ( exp `  -u ( Im `  A ) ) ) )
3023, 29eqtrd 2121 . . . . 5  |-  ( A  e.  CC  ->  ( exp `  ( _i  x.  A ) )  =  ( ( exp `  (
_i  x.  ( Re `  A ) ) )  x.  ( exp `  -u (
Im `  A )
) ) )
3130eqeq1d 2097 . . . 4  |-  ( A  e.  CC  ->  (
( exp `  (
_i  x.  A )
)  =  1  <->  (
( exp `  (
_i  x.  ( Re `  A ) ) )  x.  ( exp `  -u (
Im `  A )
) )  =  1 ) )
32 efcl 11015 . . . . . . . . 9  |-  ( ( _i  x.  ( Re
`  A ) )  e.  CC  ->  ( exp `  ( _i  x.  ( Re `  A ) ) )  e.  CC )
3325, 32syl 14 . . . . . . . 8  |-  ( A  e.  CC  ->  ( exp `  ( _i  x.  ( Re `  A ) ) )  e.  CC )
34 efcl 11015 . . . . . . . . 9  |-  ( -u ( Im `  A )  e.  CC  ->  ( exp `  -u ( Im `  A ) )  e.  CC )
3527, 34syl 14 . . . . . . . 8  |-  ( A  e.  CC  ->  ( exp `  -u ( Im `  A ) )  e.  CC )
3633, 35absmuld 10688 . . . . . . 7  |-  ( A  e.  CC  ->  ( abs `  ( ( exp `  ( _i  x.  (
Re `  A )
) )  x.  ( exp `  -u ( Im `  A ) ) ) )  =  ( ( abs `  ( exp `  ( _i  x.  (
Re `  A )
) ) )  x.  ( abs `  ( exp `  -u ( Im `  A ) ) ) ) )
37 absefi 11119 . . . . . . . . 9  |-  ( ( Re `  A )  e.  RR  ->  ( abs `  ( exp `  (
_i  x.  ( Re `  A ) ) ) )  =  1 )
383, 37syl 14 . . . . . . . 8  |-  ( A  e.  CC  ->  ( abs `  ( exp `  (
_i  x.  ( Re `  A ) ) ) )  =  1 )
3926reefcld 11020 . . . . . . . . 9  |-  ( A  e.  CC  ->  ( exp `  -u ( Im `  A ) )  e.  RR )
40 efgt0 11035 . . . . . . . . . . 11  |-  ( -u ( Im `  A )  e.  RR  ->  0  <  ( exp `  -u (
Im `  A )
) )
4126, 40syl 14 . . . . . . . . . 10  |-  ( A  e.  CC  ->  0  <  ( exp `  -u (
Im `  A )
) )
42 0re 7549 . . . . . . . . . . 11  |-  0  e.  RR
43 ltle 7633 . . . . . . . . . . 11  |-  ( ( 0  e.  RR  /\  ( exp `  -u (
Im `  A )
)  e.  RR )  ->  ( 0  < 
( exp `  -u (
Im `  A )
)  ->  0  <_  ( exp `  -u (
Im `  A )
) ) )
4442, 43mpan 416 . . . . . . . . . 10  |-  ( ( exp `  -u (
Im `  A )
)  e.  RR  ->  ( 0  <  ( exp `  -u ( Im `  A ) )  -> 
0  <_  ( exp `  -u ( Im `  A
) ) ) )
4539, 41, 44sylc 62 . . . . . . . . 9  |-  ( A  e.  CC  ->  0  <_  ( exp `  -u (
Im `  A )
) )
4639, 45absidd 10661 . . . . . . . 8  |-  ( A  e.  CC  ->  ( abs `  ( exp `  -u (
Im `  A )
) )  =  ( exp `  -u (
Im `  A )
) )
4738, 46oveq12d 5684 . . . . . . 7  |-  ( A  e.  CC  ->  (
( abs `  ( exp `  ( _i  x.  ( Re `  A ) ) ) )  x.  ( abs `  ( exp `  -u ( Im `  A ) ) ) )  =  ( 1  x.  ( exp `  -u (
Im `  A )
) ) )
4835mulid2d 7567 . . . . . . 7  |-  ( A  e.  CC  ->  (
1  x.  ( exp `  -u ( Im `  A ) ) )  =  ( exp `  -u (
Im `  A )
) )
4936, 47, 483eqtrrd 2126 . . . . . 6  |-  ( A  e.  CC  ->  ( exp `  -u ( Im `  A ) )  =  ( abs `  (
( exp `  (
_i  x.  ( Re `  A ) ) )  x.  ( exp `  -u (
Im `  A )
) ) ) )
50 fveq2 5318 . . . . . 6  |-  ( ( ( exp `  (
_i  x.  ( Re `  A ) ) )  x.  ( exp `  -u (
Im `  A )
) )  =  1  ->  ( abs `  (
( exp `  (
_i  x.  ( Re `  A ) ) )  x.  ( exp `  -u (
Im `  A )
) ) )  =  ( abs `  1
) )
5149, 50sylan9eq 2141 . . . . 5  |-  ( ( A  e.  CC  /\  ( ( exp `  (
_i  x.  ( Re `  A ) ) )  x.  ( exp `  -u (
Im `  A )
) )  =  1 )  ->  ( exp `  -u ( Im `  A
) )  =  ( abs `  1 ) )
5251ex 114 . . . 4  |-  ( A  e.  CC  ->  (
( ( exp `  (
_i  x.  ( Re `  A ) ) )  x.  ( exp `  -u (
Im `  A )
) )  =  1  ->  ( exp `  -u (
Im `  A )
)  =  ( abs `  1 ) ) )
5331, 52sylbid 149 . . 3  |-  ( A  e.  CC  ->  (
( exp `  (
_i  x.  A )
)  =  1  -> 
( exp `  -u (
Im `  A )
)  =  ( abs `  1 ) ) )
547negeq0d 7846 . . . 4  |-  ( A  e.  CC  ->  (
( Im `  A
)  =  0  <->  -u (
Im `  A )  =  0 ) )
55 reim0b 10357 . . . 4  |-  ( A  e.  CC  ->  ( A  e.  RR  <->  ( Im `  A )  =  0 ) )
56 ef0 11023 . . . . . . 7  |-  ( exp `  0 )  =  1
57 abs1 10566 . . . . . . 7  |-  ( abs `  1 )  =  1
5856, 57eqtr4i 2112 . . . . . 6  |-  ( exp `  0 )  =  ( abs `  1
)
5958eqeq2i 2099 . . . . 5  |-  ( ( exp `  -u (
Im `  A )
)  =  ( exp `  0 )  <->  ( exp `  -u ( Im `  A
) )  =  ( abs `  1 ) )
60 reef11 11051 . . . . . 6  |-  ( (
-u ( Im `  A )  e.  RR  /\  0  e.  RR )  ->  ( ( exp `  -u ( Im `  A ) )  =  ( exp `  0
)  <->  -u ( Im `  A )  =  0 ) )
6126, 42, 60sylancl 405 . . . . 5  |-  ( A  e.  CC  ->  (
( exp `  -u (
Im `  A )
)  =  ( exp `  0 )  <->  -u ( Im
`  A )  =  0 ) )
6259, 61syl5bbr 193 . . . 4  |-  ( A  e.  CC  ->  (
( exp `  -u (
Im `  A )
)  =  ( abs `  1 )  <->  -u ( Im
`  A )  =  0 ) )
6354, 55, 623bitr4rd 220 . . 3  |-  ( A  e.  CC  ->  (
( exp `  -u (
Im `  A )
)  =  ( abs `  1 )  <->  A  e.  RR ) )
6453, 63sylibd 148 . 2  |-  ( A  e.  CC  ->  (
( exp `  (
_i  x.  A )
)  =  1  ->  A  e.  RR )
)
6564imp 123 1  |-  ( ( A  e.  CC  /\  ( exp `  ( _i  x.  A ) )  =  1 )  ->  A  e.  RR )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103    <-> wb 104    = wceq 1290    e. wcel 1439   class class class wbr 3851   ` cfv 5028  (class class class)co 5666   CCcc 7409   RRcr 7410   0cc0 7411   1c1 7412   _ici 7413    + caddc 7414    x. cmul 7416    < clt 7583    <_ cle 7584   -ucneg 7715   Recre 10335   Imcim 10336   abscabs 10491   expce 10993
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 580  ax-in2 581  ax-io 666  ax-5 1382  ax-7 1383  ax-gen 1384  ax-ie1 1428  ax-ie2 1429  ax-8 1441  ax-10 1442  ax-11 1443  ax-i12 1444  ax-bndl 1445  ax-4 1446  ax-13 1450  ax-14 1451  ax-17 1465  ax-i9 1469  ax-ial 1473  ax-i5r 1474  ax-ext 2071  ax-coll 3960  ax-sep 3963  ax-nul 3971  ax-pow 4015  ax-pr 4045  ax-un 4269  ax-setind 4366  ax-iinf 4416  ax-cnex 7497  ax-resscn 7498  ax-1cn 7499  ax-1re 7500  ax-icn 7501  ax-addcl 7502  ax-addrcl 7503  ax-mulcl 7504  ax-mulrcl 7505  ax-addcom 7506  ax-mulcom 7507  ax-addass 7508  ax-mulass 7509  ax-distr 7510  ax-i2m1 7511  ax-0lt1 7512  ax-1rid 7513  ax-0id 7514  ax-rnegex 7515  ax-precex 7516  ax-cnre 7517  ax-pre-ltirr 7518  ax-pre-ltwlin 7519  ax-pre-lttrn 7520  ax-pre-apti 7521  ax-pre-ltadd 7522  ax-pre-mulgt0 7523  ax-pre-mulext 7524  ax-arch 7525  ax-caucvg 7526
This theorem depends on definitions:  df-bi 116  df-dc 782  df-3or 926  df-3an 927  df-tru 1293  df-fal 1296  df-nf 1396  df-sb 1694  df-eu 1952  df-mo 1953  df-clab 2076  df-cleq 2082  df-clel 2085  df-nfc 2218  df-ne 2257  df-nel 2352  df-ral 2365  df-rex 2366  df-reu 2367  df-rmo 2368  df-rab 2369  df-v 2622  df-sbc 2842  df-csb 2935  df-dif 3002  df-un 3004  df-in 3006  df-ss 3013  df-nul 3288  df-if 3398  df-pw 3435  df-sn 3456  df-pr 3457  df-op 3459  df-uni 3660  df-int 3695  df-iun 3738  df-disj 3829  df-br 3852  df-opab 3906  df-mpt 3907  df-tr 3943  df-id 4129  df-po 4132  df-iso 4133  df-iord 4202  df-on 4204  df-ilim 4205  df-suc 4207  df-iom 4419  df-xp 4458  df-rel 4459  df-cnv 4460  df-co 4461  df-dm 4462  df-rn 4463  df-res 4464  df-ima 4465  df-iota 4993  df-fun 5030  df-fn 5031  df-f 5032  df-f1 5033  df-fo 5034  df-f1o 5035  df-fv 5036  df-isom 5037  df-riota 5622  df-ov 5669  df-oprab 5670  df-mpt2 5671  df-1st 5925  df-2nd 5926  df-recs 6084  df-irdg 6149  df-frec 6170  df-1o 6195  df-oadd 6199  df-er 6306  df-en 6512  df-dom 6513  df-fin 6514  df-sup 6733  df-pnf 7585  df-mnf 7586  df-xr 7587  df-ltxr 7588  df-le 7589  df-sub 7716  df-neg 7717  df-reap 8113  df-ap 8120  df-div 8201  df-inn 8484  df-2 8542  df-3 8543  df-4 8544  df-n0 8735  df-z 8812  df-uz 9081  df-q 9166  df-rp 9196  df-ico 9373  df-fz 9486  df-fzo 9615  df-iseq 9914  df-seq3 9915  df-exp 10016  df-fac 10195  df-bc 10217  df-ihash 10245  df-cj 10337  df-re 10338  df-im 10339  df-rsqrt 10492  df-abs 10493  df-clim 10728  df-isum 10804  df-ef 10999  df-sin 11001  df-cos 11002
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator