ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  uneqin Unicode version

Theorem uneqin 3415
Description: Equality of union and intersection implies equality of their arguments. (Contributed by NM, 16-Apr-2006.) (Proof shortened by Andrew Salmon, 26-Jun-2011.)
Assertion
Ref Expression
uneqin  |-  ( ( A  u.  B )  =  ( A  i^i  B )  <->  A  =  B
)

Proof of Theorem uneqin
StepHypRef Expression
1 eqimss 3238 . . . 4  |-  ( ( A  u.  B )  =  ( A  i^i  B )  ->  ( A  u.  B )  C_  ( A  i^i  B ) )
2 unss 3338 . . . . 5  |-  ( ( A  C_  ( A  i^i  B )  /\  B  C_  ( A  i^i  B
) )  <->  ( A  u.  B )  C_  ( A  i^i  B ) )
3 ssin 3386 . . . . . . 7  |-  ( ( A  C_  A  /\  A  C_  B )  <->  A  C_  ( A  i^i  B ) )
4 sstr 3192 . . . . . . 7  |-  ( ( A  C_  A  /\  A  C_  B )  ->  A  C_  B )
53, 4sylbir 135 . . . . . 6  |-  ( A 
C_  ( A  i^i  B )  ->  A  C_  B
)
6 ssin 3386 . . . . . . 7  |-  ( ( B  C_  A  /\  B  C_  B )  <->  B  C_  ( A  i^i  B ) )
7 simpl 109 . . . . . . 7  |-  ( ( B  C_  A  /\  B  C_  B )  ->  B  C_  A )
86, 7sylbir 135 . . . . . 6  |-  ( B 
C_  ( A  i^i  B )  ->  B  C_  A
)
95, 8anim12i 338 . . . . 5  |-  ( ( A  C_  ( A  i^i  B )  /\  B  C_  ( A  i^i  B
) )  ->  ( A  C_  B  /\  B  C_  A ) )
102, 9sylbir 135 . . . 4  |-  ( ( A  u.  B ) 
C_  ( A  i^i  B )  ->  ( A  C_  B  /\  B  C_  A ) )
111, 10syl 14 . . 3  |-  ( ( A  u.  B )  =  ( A  i^i  B )  ->  ( A  C_  B  /\  B  C_  A ) )
12 eqss 3199 . . 3  |-  ( A  =  B  <->  ( A  C_  B  /\  B  C_  A ) )
1311, 12sylibr 134 . 2  |-  ( ( A  u.  B )  =  ( A  i^i  B )  ->  A  =  B )
14 unidm 3307 . . . 4  |-  ( A  u.  A )  =  A
15 inidm 3373 . . . 4  |-  ( A  i^i  A )  =  A
1614, 15eqtr4i 2220 . . 3  |-  ( A  u.  A )  =  ( A  i^i  A
)
17 uneq2 3312 . . 3  |-  ( A  =  B  ->  ( A  u.  A )  =  ( A  u.  B ) )
18 ineq2 3359 . . 3  |-  ( A  =  B  ->  ( A  i^i  A )  =  ( A  i^i  B
) )
1916, 17, 183eqtr3a 2253 . 2  |-  ( A  =  B  ->  ( A  u.  B )  =  ( A  i^i  B ) )
2013, 19impbii 126 1  |-  ( ( A  u.  B )  =  ( A  i^i  B )  <->  A  =  B
)
Colors of variables: wff set class
Syntax hints:    /\ wa 104    <-> wb 105    = wceq 1364    u. cun 3155    i^i cin 3156    C_ wss 3157
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-ext 2178
This theorem depends on definitions:  df-bi 117  df-tru 1367  df-nf 1475  df-sb 1777  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-v 2765  df-un 3161  df-in 3163  df-ss 3170
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator