ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  resqrexlemcalc1 Unicode version

Theorem resqrexlemcalc1 10956
Description: Lemma for resqrex 10968. Some of the calculations involved in showing that the sequence converges. (Contributed by Mario Carneiro and Jim Kingdon, 29-Jul-2021.)
Hypotheses
Ref Expression
resqrexlemex.seq  |-  F  =  seq 1 ( ( y  e.  RR+ ,  z  e.  RR+  |->  ( ( y  +  ( A  /  y ) )  /  2 ) ) ,  ( NN  X.  { ( 1  +  A ) } ) )
resqrexlemex.a  |-  ( ph  ->  A  e.  RR )
resqrexlemex.agt0  |-  ( ph  ->  0  <_  A )
Assertion
Ref Expression
resqrexlemcalc1  |-  ( (
ph  /\  N  e.  NN )  ->  ( ( ( F `  ( N  +  1 ) ) ^ 2 )  -  A )  =  ( ( ( ( ( F `  N
) ^ 2 )  -  A ) ^
2 )  /  (
4  x.  ( ( F `  N ) ^ 2 ) ) ) )
Distinct variable groups:    y, A, z    ph, y, z
Allowed substitution hints:    F( y, z)    N( y, z)

Proof of Theorem resqrexlemcalc1
StepHypRef Expression
1 resqrexlemex.seq . . . . . . . 8  |-  F  =  seq 1 ( ( y  e.  RR+ ,  z  e.  RR+  |->  ( ( y  +  ( A  /  y ) )  /  2 ) ) ,  ( NN  X.  { ( 1  +  A ) } ) )
2 resqrexlemex.a . . . . . . . 8  |-  ( ph  ->  A  e.  RR )
3 resqrexlemex.agt0 . . . . . . . 8  |-  ( ph  ->  0  <_  A )
41, 2, 3resqrexlemfp1 10951 . . . . . . 7  |-  ( (
ph  /\  N  e.  NN )  ->  ( F `
 ( N  + 
1 ) )  =  ( ( ( F `
 N )  +  ( A  /  ( F `  N )
) )  /  2
) )
54oveq1d 5857 . . . . . 6  |-  ( (
ph  /\  N  e.  NN )  ->  ( ( F `  ( N  +  1 ) ) ^ 2 )  =  ( ( ( ( F `  N )  +  ( A  / 
( F `  N
) ) )  / 
2 ) ^ 2 ) )
61, 2, 3resqrexlemf 10949 . . . . . . . . . . 11  |-  ( ph  ->  F : NN --> RR+ )
76ffvelrnda 5620 . . . . . . . . . 10  |-  ( (
ph  /\  N  e.  NN )  ->  ( F `
 N )  e.  RR+ )
87rpred 9632 . . . . . . . . 9  |-  ( (
ph  /\  N  e.  NN )  ->  ( F `
 N )  e.  RR )
92adantr 274 . . . . . . . . . 10  |-  ( (
ph  /\  N  e.  NN )  ->  A  e.  RR )
109, 7rerpdivcld 9664 . . . . . . . . 9  |-  ( (
ph  /\  N  e.  NN )  ->  ( A  /  ( F `  N ) )  e.  RR )
118, 10readdcld 7928 . . . . . . . 8  |-  ( (
ph  /\  N  e.  NN )  ->  ( ( F `  N )  +  ( A  / 
( F `  N
) ) )  e.  RR )
1211recnd 7927 . . . . . . 7  |-  ( (
ph  /\  N  e.  NN )  ->  ( ( F `  N )  +  ( A  / 
( F `  N
) ) )  e.  CC )
13 2cnd 8930 . . . . . . 7  |-  ( (
ph  /\  N  e.  NN )  ->  2  e.  CC )
14 2ap0 8950 . . . . . . . 8  |-  2 #  0
1514a1i 9 . . . . . . 7  |-  ( (
ph  /\  N  e.  NN )  ->  2 #  0 )
1612, 13, 15sqdivapd 10601 . . . . . 6  |-  ( (
ph  /\  N  e.  NN )  ->  ( ( ( ( F `  N )  +  ( A  /  ( F `
 N ) ) )  /  2 ) ^ 2 )  =  ( ( ( ( F `  N )  +  ( A  / 
( F `  N
) ) ) ^
2 )  /  (
2 ^ 2 ) ) )
175, 16eqtrd 2198 . . . . 5  |-  ( (
ph  /\  N  e.  NN )  ->  ( ( F `  ( N  +  1 ) ) ^ 2 )  =  ( ( ( ( F `  N )  +  ( A  / 
( F `  N
) ) ) ^
2 )  /  (
2 ^ 2 ) ) )
18 sq2 10550 . . . . . 6  |-  ( 2 ^ 2 )  =  4
1918oveq2i 5853 . . . . 5  |-  ( ( ( ( F `  N )  +  ( A  /  ( F `
 N ) ) ) ^ 2 )  /  ( 2 ^ 2 ) )  =  ( ( ( ( F `  N )  +  ( A  / 
( F `  N
) ) ) ^
2 )  /  4
)
2017, 19eqtrdi 2215 . . . 4  |-  ( (
ph  /\  N  e.  NN )  ->  ( ( F `  ( N  +  1 ) ) ^ 2 )  =  ( ( ( ( F `  N )  +  ( A  / 
( F `  N
) ) ) ^
2 )  /  4
) )
219recnd 7927 . . . . . 6  |-  ( (
ph  /\  N  e.  NN )  ->  A  e.  CC )
22 4cn 8935 . . . . . . 7  |-  4  e.  CC
2322a1i 9 . . . . . 6  |-  ( (
ph  /\  N  e.  NN )  ->  4  e.  CC )
24 4re 8934 . . . . . . . 8  |-  4  e.  RR
2524a1i 9 . . . . . . 7  |-  ( (
ph  /\  N  e.  NN )  ->  4  e.  RR )
26 4pos 8954 . . . . . . . 8  |-  0  <  4
2726a1i 9 . . . . . . 7  |-  ( (
ph  /\  N  e.  NN )  ->  0  <  4 )
2825, 27gt0ap0d 8527 . . . . . 6  |-  ( (
ph  /\  N  e.  NN )  ->  4 #  0 )
2921, 23, 28divcanap3d 8691 . . . . 5  |-  ( (
ph  /\  N  e.  NN )  ->  ( ( 4  x.  A )  /  4 )  =  A )
3029eqcomd 2171 . . . 4  |-  ( (
ph  /\  N  e.  NN )  ->  A  =  ( ( 4  x.  A )  /  4
) )
3120, 30oveq12d 5860 . . 3  |-  ( (
ph  /\  N  e.  NN )  ->  ( ( ( F `  ( N  +  1 ) ) ^ 2 )  -  A )  =  ( ( ( ( ( F `  N
)  +  ( A  /  ( F `  N ) ) ) ^ 2 )  / 
4 )  -  (
( 4  x.  A
)  /  4 ) ) )
3212sqcld 10586 . . . 4  |-  ( (
ph  /\  N  e.  NN )  ->  ( ( ( F `  N
)  +  ( A  /  ( F `  N ) ) ) ^ 2 )  e.  CC )
3323, 21mulcld 7919 . . . 4  |-  ( (
ph  /\  N  e.  NN )  ->  ( 4  x.  A )  e.  CC )
3432, 33, 23, 28divsubdirapd 8726 . . 3  |-  ( (
ph  /\  N  e.  NN )  ->  ( ( ( ( ( F `
 N )  +  ( A  /  ( F `  N )
) ) ^ 2 )  -  ( 4  x.  A ) )  /  4 )  =  ( ( ( ( ( F `  N
)  +  ( A  /  ( F `  N ) ) ) ^ 2 )  / 
4 )  -  (
( 4  x.  A
)  /  4 ) ) )
3531, 34eqtr4d 2201 . 2  |-  ( (
ph  /\  N  e.  NN )  ->  ( ( ( F `  ( N  +  1 ) ) ^ 2 )  -  A )  =  ( ( ( ( ( F `  N
)  +  ( A  /  ( F `  N ) ) ) ^ 2 )  -  ( 4  x.  A
) )  /  4
) )
368recnd 7927 . . . . . . . . 9  |-  ( (
ph  /\  N  e.  NN )  ->  ( F `
 N )  e.  CC )
3736sqcld 10586 . . . . . . . 8  |-  ( (
ph  /\  N  e.  NN )  ->  ( ( F `  N ) ^ 2 )  e.  CC )
3813, 21mulcld 7919 . . . . . . . 8  |-  ( (
ph  /\  N  e.  NN )  ->  ( 2  x.  A )  e.  CC )
3937, 38, 33addsubassd 8229 . . . . . . 7  |-  ( (
ph  /\  N  e.  NN )  ->  ( ( ( ( F `  N ) ^ 2 )  +  ( 2  x.  A ) )  -  ( 4  x.  A ) )  =  ( ( ( F `
 N ) ^
2 )  +  ( ( 2  x.  A
)  -  ( 4  x.  A ) ) ) )
40 2cn 8928 . . . . . . . . . . . 12  |-  2  e.  CC
4122, 40negsubdi2i 8184 . . . . . . . . . . 11  |-  -u (
4  -  2 )  =  ( 2  -  4 )
42 2p2e4 8984 . . . . . . . . . . . . . 14  |-  ( 2  +  2 )  =  4
4342oveq1i 5852 . . . . . . . . . . . . 13  |-  ( ( 2  +  2 )  -  2 )  =  ( 4  -  2 )
4440, 40pncan3oi 8114 . . . . . . . . . . . . 13  |-  ( ( 2  +  2 )  -  2 )  =  2
4543, 44eqtr3i 2188 . . . . . . . . . . . 12  |-  ( 4  -  2 )  =  2
4645negeqi 8092 . . . . . . . . . . 11  |-  -u (
4  -  2 )  =  -u 2
4741, 46eqtr3i 2188 . . . . . . . . . 10  |-  ( 2  -  4 )  = 
-u 2
4847oveq1i 5852 . . . . . . . . 9  |-  ( ( 2  -  4 )  x.  A )  =  ( -u 2  x.  A )
4913, 23, 21subdird 8313 . . . . . . . . 9  |-  ( (
ph  /\  N  e.  NN )  ->  ( ( 2  -  4 )  x.  A )  =  ( ( 2  x.  A )  -  (
4  x.  A ) ) )
5013, 21mulneg1d 8309 . . . . . . . . 9  |-  ( (
ph  /\  N  e.  NN )  ->  ( -u
2  x.  A )  =  -u ( 2  x.  A ) )
5148, 49, 503eqtr3a 2223 . . . . . . . 8  |-  ( (
ph  /\  N  e.  NN )  ->  ( ( 2  x.  A )  -  ( 4  x.  A ) )  = 
-u ( 2  x.  A ) )
5251oveq2d 5858 . . . . . . 7  |-  ( (
ph  /\  N  e.  NN )  ->  ( ( ( F `  N
) ^ 2 )  +  ( ( 2  x.  A )  -  ( 4  x.  A
) ) )  =  ( ( ( F `
 N ) ^
2 )  +  -u ( 2  x.  A
) ) )
5337, 38negsubd 8215 . . . . . . 7  |-  ( (
ph  /\  N  e.  NN )  ->  ( ( ( F `  N
) ^ 2 )  +  -u ( 2  x.  A ) )  =  ( ( ( F `
 N ) ^
2 )  -  (
2  x.  A ) ) )
5439, 52, 533eqtrd 2202 . . . . . 6  |-  ( (
ph  /\  N  e.  NN )  ->  ( ( ( ( F `  N ) ^ 2 )  +  ( 2  x.  A ) )  -  ( 4  x.  A ) )  =  ( ( ( F `
 N ) ^
2 )  -  (
2  x.  A ) ) )
5554oveq1d 5857 . . . . 5  |-  ( (
ph  /\  N  e.  NN )  ->  ( ( ( ( ( F `
 N ) ^
2 )  +  ( 2  x.  A ) )  -  ( 4  x.  A ) )  +  ( ( A  /  ( F `  N ) ) ^
2 ) )  =  ( ( ( ( F `  N ) ^ 2 )  -  ( 2  x.  A
) )  +  ( ( A  /  ( F `  N )
) ^ 2 ) ) )
5610recnd 7927 . . . . . . . . 9  |-  ( (
ph  /\  N  e.  NN )  ->  ( A  /  ( F `  N ) )  e.  CC )
57 binom2 10566 . . . . . . . . 9  |-  ( ( ( F `  N
)  e.  CC  /\  ( A  /  ( F `  N )
)  e.  CC )  ->  ( ( ( F `  N )  +  ( A  / 
( F `  N
) ) ) ^
2 )  =  ( ( ( ( F `
 N ) ^
2 )  +  ( 2  x.  ( ( F `  N )  x.  ( A  / 
( F `  N
) ) ) ) )  +  ( ( A  /  ( F `
 N ) ) ^ 2 ) ) )
5836, 56, 57syl2anc 409 . . . . . . . 8  |-  ( (
ph  /\  N  e.  NN )  ->  ( ( ( F `  N
)  +  ( A  /  ( F `  N ) ) ) ^ 2 )  =  ( ( ( ( F `  N ) ^ 2 )  +  ( 2  x.  (
( F `  N
)  x.  ( A  /  ( F `  N ) ) ) ) )  +  ( ( A  /  ( F `  N )
) ^ 2 ) ) )
597rpap0d 9638 . . . . . . . . . . . 12  |-  ( (
ph  /\  N  e.  NN )  ->  ( F `
 N ) #  0 )
6021, 36, 59divcanap2d 8688 . . . . . . . . . . 11  |-  ( (
ph  /\  N  e.  NN )  ->  ( ( F `  N )  x.  ( A  / 
( F `  N
) ) )  =  A )
6160oveq2d 5858 . . . . . . . . . 10  |-  ( (
ph  /\  N  e.  NN )  ->  ( 2  x.  ( ( F `
 N )  x.  ( A  /  ( F `  N )
) ) )  =  ( 2  x.  A
) )
6261oveq2d 5858 . . . . . . . . 9  |-  ( (
ph  /\  N  e.  NN )  ->  ( ( ( F `  N
) ^ 2 )  +  ( 2  x.  ( ( F `  N )  x.  ( A  /  ( F `  N ) ) ) ) )  =  ( ( ( F `  N ) ^ 2 )  +  ( 2  x.  A ) ) )
6362oveq1d 5857 . . . . . . . 8  |-  ( (
ph  /\  N  e.  NN )  ->  ( ( ( ( F `  N ) ^ 2 )  +  ( 2  x.  ( ( F `
 N )  x.  ( A  /  ( F `  N )
) ) ) )  +  ( ( A  /  ( F `  N ) ) ^
2 ) )  =  ( ( ( ( F `  N ) ^ 2 )  +  ( 2  x.  A
) )  +  ( ( A  /  ( F `  N )
) ^ 2 ) ) )
6458, 63eqtrd 2198 . . . . . . 7  |-  ( (
ph  /\  N  e.  NN )  ->  ( ( ( F `  N
)  +  ( A  /  ( F `  N ) ) ) ^ 2 )  =  ( ( ( ( F `  N ) ^ 2 )  +  ( 2  x.  A
) )  +  ( ( A  /  ( F `  N )
) ^ 2 ) ) )
6564oveq1d 5857 . . . . . 6  |-  ( (
ph  /\  N  e.  NN )  ->  ( ( ( ( F `  N )  +  ( A  /  ( F `
 N ) ) ) ^ 2 )  -  ( 4  x.  A ) )  =  ( ( ( ( ( F `  N
) ^ 2 )  +  ( 2  x.  A ) )  +  ( ( A  / 
( F `  N
) ) ^ 2 ) )  -  (
4  x.  A ) ) )
6637, 38addcld 7918 . . . . . . 7  |-  ( (
ph  /\  N  e.  NN )  ->  ( ( ( F `  N
) ^ 2 )  +  ( 2  x.  A ) )  e.  CC )
6756sqcld 10586 . . . . . . 7  |-  ( (
ph  /\  N  e.  NN )  ->  ( ( A  /  ( F `
 N ) ) ^ 2 )  e.  CC )
6866, 67, 33addsubd 8230 . . . . . 6  |-  ( (
ph  /\  N  e.  NN )  ->  ( ( ( ( ( F `
 N ) ^
2 )  +  ( 2  x.  A ) )  +  ( ( A  /  ( F `
 N ) ) ^ 2 ) )  -  ( 4  x.  A ) )  =  ( ( ( ( ( F `  N
) ^ 2 )  +  ( 2  x.  A ) )  -  ( 4  x.  A
) )  +  ( ( A  /  ( F `  N )
) ^ 2 ) ) )
6965, 68eqtrd 2198 . . . . 5  |-  ( (
ph  /\  N  e.  NN )  ->  ( ( ( ( F `  N )  +  ( A  /  ( F `
 N ) ) ) ^ 2 )  -  ( 4  x.  A ) )  =  ( ( ( ( ( F `  N
) ^ 2 )  +  ( 2  x.  A ) )  -  ( 4  x.  A
) )  +  ( ( A  /  ( F `  N )
) ^ 2 ) ) )
7037, 38subcld 8209 . . . . . . 7  |-  ( (
ph  /\  N  e.  NN )  ->  ( ( ( F `  N
) ^ 2 )  -  ( 2  x.  A ) )  e.  CC )
7170, 67addcld 7918 . . . . . 6  |-  ( (
ph  /\  N  e.  NN )  ->  ( ( ( ( F `  N ) ^ 2 )  -  ( 2  x.  A ) )  +  ( ( A  /  ( F `  N ) ) ^
2 ) )  e.  CC )
72 2z 9219 . . . . . . . . 9  |-  2  e.  ZZ
7372a1i 9 . . . . . . . 8  |-  ( (
ph  /\  N  e.  NN )  ->  2  e.  ZZ )
747, 73rpexpcld 10612 . . . . . . 7  |-  ( (
ph  /\  N  e.  NN )  ->  ( ( F `  N ) ^ 2 )  e.  RR+ )
7574rpap0d 9638 . . . . . 6  |-  ( (
ph  /\  N  e.  NN )  ->  ( ( F `  N ) ^ 2 ) #  0 )
7671, 37, 75divcanap4d 8692 . . . . 5  |-  ( (
ph  /\  N  e.  NN )  ->  ( ( ( ( ( ( F `  N ) ^ 2 )  -  ( 2  x.  A
) )  +  ( ( A  /  ( F `  N )
) ^ 2 ) )  x.  ( ( F `  N ) ^ 2 ) )  /  ( ( F `
 N ) ^
2 ) )  =  ( ( ( ( F `  N ) ^ 2 )  -  ( 2  x.  A
) )  +  ( ( A  /  ( F `  N )
) ^ 2 ) ) )
7755, 69, 763eqtr4d 2208 . . . 4  |-  ( (
ph  /\  N  e.  NN )  ->  ( ( ( ( F `  N )  +  ( A  /  ( F `
 N ) ) ) ^ 2 )  -  ( 4  x.  A ) )  =  ( ( ( ( ( ( F `  N ) ^ 2 )  -  ( 2  x.  A ) )  +  ( ( A  /  ( F `  N ) ) ^
2 ) )  x.  ( ( F `  N ) ^ 2 ) )  /  (
( F `  N
) ^ 2 ) ) )
7837, 38, 37subdird 8313 . . . . . . . 8  |-  ( (
ph  /\  N  e.  NN )  ->  ( ( ( ( F `  N ) ^ 2 )  -  ( 2  x.  A ) )  x.  ( ( F `
 N ) ^
2 ) )  =  ( ( ( ( F `  N ) ^ 2 )  x.  ( ( F `  N ) ^ 2 ) )  -  (
( 2  x.  A
)  x.  ( ( F `  N ) ^ 2 ) ) ) )
7937sqvald 10585 . . . . . . . . 9  |-  ( (
ph  /\  N  e.  NN )  ->  ( ( ( F `  N
) ^ 2 ) ^ 2 )  =  ( ( ( F `
 N ) ^
2 )  x.  (
( F `  N
) ^ 2 ) ) )
8013, 21, 37mul32d 8051 . . . . . . . . . 10  |-  ( (
ph  /\  N  e.  NN )  ->  ( ( 2  x.  A )  x.  ( ( F `
 N ) ^
2 ) )  =  ( ( 2  x.  ( ( F `  N ) ^ 2 ) )  x.  A
) )
8113, 37, 21mulassd 7922 . . . . . . . . . 10  |-  ( (
ph  /\  N  e.  NN )  ->  ( ( 2  x.  ( ( F `  N ) ^ 2 ) )  x.  A )  =  ( 2  x.  (
( ( F `  N ) ^ 2 )  x.  A ) ) )
8280, 81eqtr2d 2199 . . . . . . . . 9  |-  ( (
ph  /\  N  e.  NN )  ->  ( 2  x.  ( ( ( F `  N ) ^ 2 )  x.  A ) )  =  ( ( 2  x.  A )  x.  (
( F `  N
) ^ 2 ) ) )
8379, 82oveq12d 5860 . . . . . . . 8  |-  ( (
ph  /\  N  e.  NN )  ->  ( ( ( ( F `  N ) ^ 2 ) ^ 2 )  -  ( 2  x.  ( ( ( F `
 N ) ^
2 )  x.  A
) ) )  =  ( ( ( ( F `  N ) ^ 2 )  x.  ( ( F `  N ) ^ 2 ) )  -  (
( 2  x.  A
)  x.  ( ( F `  N ) ^ 2 ) ) ) )
8478, 83eqtr4d 2201 . . . . . . 7  |-  ( (
ph  /\  N  e.  NN )  ->  ( ( ( ( F `  N ) ^ 2 )  -  ( 2  x.  A ) )  x.  ( ( F `
 N ) ^
2 ) )  =  ( ( ( ( F `  N ) ^ 2 ) ^
2 )  -  (
2  x.  ( ( ( F `  N
) ^ 2 )  x.  A ) ) ) )
8521, 36, 59sqdivapd 10601 . . . . . . . . 9  |-  ( (
ph  /\  N  e.  NN )  ->  ( ( A  /  ( F `
 N ) ) ^ 2 )  =  ( ( A ^
2 )  /  (
( F `  N
) ^ 2 ) ) )
8685oveq1d 5857 . . . . . . . 8  |-  ( (
ph  /\  N  e.  NN )  ->  ( ( ( A  /  ( F `  N )
) ^ 2 )  x.  ( ( F `
 N ) ^
2 ) )  =  ( ( ( A ^ 2 )  / 
( ( F `  N ) ^ 2 ) )  x.  (
( F `  N
) ^ 2 ) ) )
8721sqcld 10586 . . . . . . . . 9  |-  ( (
ph  /\  N  e.  NN )  ->  ( A ^ 2 )  e.  CC )
8887, 37, 75divcanap1d 8687 . . . . . . . 8  |-  ( (
ph  /\  N  e.  NN )  ->  ( ( ( A ^ 2 )  /  ( ( F `  N ) ^ 2 ) )  x.  ( ( F `
 N ) ^
2 ) )  =  ( A ^ 2 ) )
8986, 88eqtrd 2198 . . . . . . 7  |-  ( (
ph  /\  N  e.  NN )  ->  ( ( ( A  /  ( F `  N )
) ^ 2 )  x.  ( ( F `
 N ) ^
2 ) )  =  ( A ^ 2 ) )
9084, 89oveq12d 5860 . . . . . 6  |-  ( (
ph  /\  N  e.  NN )  ->  ( ( ( ( ( F `
 N ) ^
2 )  -  (
2  x.  A ) )  x.  ( ( F `  N ) ^ 2 ) )  +  ( ( ( A  /  ( F `
 N ) ) ^ 2 )  x.  ( ( F `  N ) ^ 2 ) ) )  =  ( ( ( ( ( F `  N
) ^ 2 ) ^ 2 )  -  ( 2  x.  (
( ( F `  N ) ^ 2 )  x.  A ) ) )  +  ( A ^ 2 ) ) )
9170, 67, 37adddird 7924 . . . . . 6  |-  ( (
ph  /\  N  e.  NN )  ->  ( ( ( ( ( F `
 N ) ^
2 )  -  (
2  x.  A ) )  +  ( ( A  /  ( F `
 N ) ) ^ 2 ) )  x.  ( ( F `
 N ) ^
2 ) )  =  ( ( ( ( ( F `  N
) ^ 2 )  -  ( 2  x.  A ) )  x.  ( ( F `  N ) ^ 2 ) )  +  ( ( ( A  / 
( F `  N
) ) ^ 2 )  x.  ( ( F `  N ) ^ 2 ) ) ) )
92 binom2sub 10568 . . . . . . 7  |-  ( ( ( ( F `  N ) ^ 2 )  e.  CC  /\  A  e.  CC )  ->  ( ( ( ( F `  N ) ^ 2 )  -  A ) ^ 2 )  =  ( ( ( ( ( F `
 N ) ^
2 ) ^ 2 )  -  ( 2  x.  ( ( ( F `  N ) ^ 2 )  x.  A ) ) )  +  ( A ^
2 ) ) )
9337, 21, 92syl2anc 409 . . . . . 6  |-  ( (
ph  /\  N  e.  NN )  ->  ( ( ( ( F `  N ) ^ 2 )  -  A ) ^ 2 )  =  ( ( ( ( ( F `  N
) ^ 2 ) ^ 2 )  -  ( 2  x.  (
( ( F `  N ) ^ 2 )  x.  A ) ) )  +  ( A ^ 2 ) ) )
9490, 91, 933eqtr4d 2208 . . . . 5  |-  ( (
ph  /\  N  e.  NN )  ->  ( ( ( ( ( F `
 N ) ^
2 )  -  (
2  x.  A ) )  +  ( ( A  /  ( F `
 N ) ) ^ 2 ) )  x.  ( ( F `
 N ) ^
2 ) )  =  ( ( ( ( F `  N ) ^ 2 )  -  A ) ^ 2 ) )
9594oveq1d 5857 . . . 4  |-  ( (
ph  /\  N  e.  NN )  ->  ( ( ( ( ( ( F `  N ) ^ 2 )  -  ( 2  x.  A
) )  +  ( ( A  /  ( F `  N )
) ^ 2 ) )  x.  ( ( F `  N ) ^ 2 ) )  /  ( ( F `
 N ) ^
2 ) )  =  ( ( ( ( ( F `  N
) ^ 2 )  -  A ) ^
2 )  /  (
( F `  N
) ^ 2 ) ) )
9677, 95eqtrd 2198 . . 3  |-  ( (
ph  /\  N  e.  NN )  ->  ( ( ( ( F `  N )  +  ( A  /  ( F `
 N ) ) ) ^ 2 )  -  ( 4  x.  A ) )  =  ( ( ( ( ( F `  N
) ^ 2 )  -  A ) ^
2 )  /  (
( F `  N
) ^ 2 ) ) )
9796oveq1d 5857 . 2  |-  ( (
ph  /\  N  e.  NN )  ->  ( ( ( ( ( F `
 N )  +  ( A  /  ( F `  N )
) ) ^ 2 )  -  ( 4  x.  A ) )  /  4 )  =  ( ( ( ( ( ( F `  N ) ^ 2 )  -  A ) ^ 2 )  / 
( ( F `  N ) ^ 2 ) )  /  4
) )
9837, 21subcld 8209 . . . . 5  |-  ( (
ph  /\  N  e.  NN )  ->  ( ( ( F `  N
) ^ 2 )  -  A )  e.  CC )
9998sqcld 10586 . . . 4  |-  ( (
ph  /\  N  e.  NN )  ->  ( ( ( ( F `  N ) ^ 2 )  -  A ) ^ 2 )  e.  CC )
10099, 37, 23, 75, 28divdivap1d 8718 . . 3  |-  ( (
ph  /\  N  e.  NN )  ->  ( ( ( ( ( ( F `  N ) ^ 2 )  -  A ) ^ 2 )  /  ( ( F `  N ) ^ 2 ) )  /  4 )  =  ( ( ( ( ( F `  N
) ^ 2 )  -  A ) ^
2 )  /  (
( ( F `  N ) ^ 2 )  x.  4 ) ) )
10137, 23mulcomd 7920 . . . 4  |-  ( (
ph  /\  N  e.  NN )  ->  ( ( ( F `  N
) ^ 2 )  x.  4 )  =  ( 4  x.  (
( F `  N
) ^ 2 ) ) )
102101oveq2d 5858 . . 3  |-  ( (
ph  /\  N  e.  NN )  ->  ( ( ( ( ( F `
 N ) ^
2 )  -  A
) ^ 2 )  /  ( ( ( F `  N ) ^ 2 )  x.  4 ) )  =  ( ( ( ( ( F `  N
) ^ 2 )  -  A ) ^
2 )  /  (
4  x.  ( ( F `  N ) ^ 2 ) ) ) )
103100, 102eqtrd 2198 . 2  |-  ( (
ph  /\  N  e.  NN )  ->  ( ( ( ( ( ( F `  N ) ^ 2 )  -  A ) ^ 2 )  /  ( ( F `  N ) ^ 2 ) )  /  4 )  =  ( ( ( ( ( F `  N
) ^ 2 )  -  A ) ^
2 )  /  (
4  x.  ( ( F `  N ) ^ 2 ) ) ) )
10435, 97, 1033eqtrd 2202 1  |-  ( (
ph  /\  N  e.  NN )  ->  ( ( ( F `  ( N  +  1 ) ) ^ 2 )  -  A )  =  ( ( ( ( ( F `  N
) ^ 2 )  -  A ) ^
2 )  /  (
4  x.  ( ( F `  N ) ^ 2 ) ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103    = wceq 1343    e. wcel 2136   {csn 3576   class class class wbr 3982    X. cxp 4602   ` cfv 5188  (class class class)co 5842    e. cmpo 5844   CCcc 7751   RRcr 7752   0cc0 7753   1c1 7754    + caddc 7756    x. cmul 7758    < clt 7933    <_ cle 7934    - cmin 8069   -ucneg 8070   # cap 8479    / cdiv 8568   NNcn 8857   2c2 8908   4c4 8910   ZZcz 9191   RR+crp 9589    seqcseq 10380   ^cexp 10454
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1435  ax-7 1436  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-10 1493  ax-11 1494  ax-i12 1495  ax-bndl 1497  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522  ax-i5r 1523  ax-13 2138  ax-14 2139  ax-ext 2147  ax-coll 4097  ax-sep 4100  ax-nul 4108  ax-pow 4153  ax-pr 4187  ax-un 4411  ax-setind 4514  ax-iinf 4565  ax-cnex 7844  ax-resscn 7845  ax-1cn 7846  ax-1re 7847  ax-icn 7848  ax-addcl 7849  ax-addrcl 7850  ax-mulcl 7851  ax-mulrcl 7852  ax-addcom 7853  ax-mulcom 7854  ax-addass 7855  ax-mulass 7856  ax-distr 7857  ax-i2m1 7858  ax-0lt1 7859  ax-1rid 7860  ax-0id 7861  ax-rnegex 7862  ax-precex 7863  ax-cnre 7864  ax-pre-ltirr 7865  ax-pre-ltwlin 7866  ax-pre-lttrn 7867  ax-pre-apti 7868  ax-pre-ltadd 7869  ax-pre-mulgt0 7870  ax-pre-mulext 7871
This theorem depends on definitions:  df-bi 116  df-dc 825  df-3or 969  df-3an 970  df-tru 1346  df-fal 1349  df-nf 1449  df-sb 1751  df-eu 2017  df-mo 2018  df-clab 2152  df-cleq 2158  df-clel 2161  df-nfc 2297  df-ne 2337  df-nel 2432  df-ral 2449  df-rex 2450  df-reu 2451  df-rmo 2452  df-rab 2453  df-v 2728  df-sbc 2952  df-csb 3046  df-dif 3118  df-un 3120  df-in 3122  df-ss 3129  df-nul 3410  df-if 3521  df-pw 3561  df-sn 3582  df-pr 3583  df-op 3585  df-uni 3790  df-int 3825  df-iun 3868  df-br 3983  df-opab 4044  df-mpt 4045  df-tr 4081  df-id 4271  df-po 4274  df-iso 4275  df-iord 4344  df-on 4346  df-ilim 4347  df-suc 4349  df-iom 4568  df-xp 4610  df-rel 4611  df-cnv 4612  df-co 4613  df-dm 4614  df-rn 4615  df-res 4616  df-ima 4617  df-iota 5153  df-fun 5190  df-fn 5191  df-f 5192  df-f1 5193  df-fo 5194  df-f1o 5195  df-fv 5196  df-riota 5798  df-ov 5845  df-oprab 5846  df-mpo 5847  df-1st 6108  df-2nd 6109  df-recs 6273  df-frec 6359  df-pnf 7935  df-mnf 7936  df-xr 7937  df-ltxr 7938  df-le 7939  df-sub 8071  df-neg 8072  df-reap 8473  df-ap 8480  df-div 8569  df-inn 8858  df-2 8916  df-3 8917  df-4 8918  df-n0 9115  df-z 9192  df-uz 9467  df-rp 9590  df-seqfrec 10381  df-exp 10455
This theorem is referenced by:  resqrexlemcalc2  10957
  Copyright terms: Public domain W3C validator