Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > resqrexlemcalc1 | Unicode version |
Description: Lemma for resqrex 10990. Some of the calculations involved in showing that the sequence converges. (Contributed by Mario Carneiro and Jim Kingdon, 29-Jul-2021.) |
Ref | Expression |
---|---|
resqrexlemex.seq | |
resqrexlemex.a | |
resqrexlemex.agt0 |
Ref | Expression |
---|---|
resqrexlemcalc1 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | resqrexlemex.seq | . . . . . . . 8 | |
2 | resqrexlemex.a | . . . . . . . 8 | |
3 | resqrexlemex.agt0 | . . . . . . . 8 | |
4 | 1, 2, 3 | resqrexlemfp1 10973 | . . . . . . 7 |
5 | 4 | oveq1d 5868 | . . . . . 6 |
6 | 1, 2, 3 | resqrexlemf 10971 | . . . . . . . . . . 11 |
7 | 6 | ffvelrnda 5631 | . . . . . . . . . 10 |
8 | 7 | rpred 9653 | . . . . . . . . 9 |
9 | 2 | adantr 274 | . . . . . . . . . 10 |
10 | 9, 7 | rerpdivcld 9685 | . . . . . . . . 9 |
11 | 8, 10 | readdcld 7949 | . . . . . . . 8 |
12 | 11 | recnd 7948 | . . . . . . 7 |
13 | 2cnd 8951 | . . . . . . 7 | |
14 | 2ap0 8971 | . . . . . . . 8 # | |
15 | 14 | a1i 9 | . . . . . . 7 # |
16 | 12, 13, 15 | sqdivapd 10622 | . . . . . 6 |
17 | 5, 16 | eqtrd 2203 | . . . . 5 |
18 | sq2 10571 | . . . . . 6 | |
19 | 18 | oveq2i 5864 | . . . . 5 |
20 | 17, 19 | eqtrdi 2219 | . . . 4 |
21 | 9 | recnd 7948 | . . . . . 6 |
22 | 4cn 8956 | . . . . . . 7 | |
23 | 22 | a1i 9 | . . . . . 6 |
24 | 4re 8955 | . . . . . . . 8 | |
25 | 24 | a1i 9 | . . . . . . 7 |
26 | 4pos 8975 | . . . . . . . 8 | |
27 | 26 | a1i 9 | . . . . . . 7 |
28 | 25, 27 | gt0ap0d 8548 | . . . . . 6 # |
29 | 21, 23, 28 | divcanap3d 8712 | . . . . 5 |
30 | 29 | eqcomd 2176 | . . . 4 |
31 | 20, 30 | oveq12d 5871 | . . 3 |
32 | 12 | sqcld 10607 | . . . 4 |
33 | 23, 21 | mulcld 7940 | . . . 4 |
34 | 32, 33, 23, 28 | divsubdirapd 8747 | . . 3 |
35 | 31, 34 | eqtr4d 2206 | . 2 |
36 | 8 | recnd 7948 | . . . . . . . . 9 |
37 | 36 | sqcld 10607 | . . . . . . . 8 |
38 | 13, 21 | mulcld 7940 | . . . . . . . 8 |
39 | 37, 38, 33 | addsubassd 8250 | . . . . . . 7 |
40 | 2cn 8949 | . . . . . . . . . . . 12 | |
41 | 22, 40 | negsubdi2i 8205 | . . . . . . . . . . 11 |
42 | 2p2e4 9005 | . . . . . . . . . . . . . 14 | |
43 | 42 | oveq1i 5863 | . . . . . . . . . . . . 13 |
44 | 40, 40 | pncan3oi 8135 | . . . . . . . . . . . . 13 |
45 | 43, 44 | eqtr3i 2193 | . . . . . . . . . . . 12 |
46 | 45 | negeqi 8113 | . . . . . . . . . . 11 |
47 | 41, 46 | eqtr3i 2193 | . . . . . . . . . 10 |
48 | 47 | oveq1i 5863 | . . . . . . . . 9 |
49 | 13, 23, 21 | subdird 8334 | . . . . . . . . 9 |
50 | 13, 21 | mulneg1d 8330 | . . . . . . . . 9 |
51 | 48, 49, 50 | 3eqtr3a 2227 | . . . . . . . 8 |
52 | 51 | oveq2d 5869 | . . . . . . 7 |
53 | 37, 38 | negsubd 8236 | . . . . . . 7 |
54 | 39, 52, 53 | 3eqtrd 2207 | . . . . . 6 |
55 | 54 | oveq1d 5868 | . . . . 5 |
56 | 10 | recnd 7948 | . . . . . . . . 9 |
57 | binom2 10587 | . . . . . . . . 9 | |
58 | 36, 56, 57 | syl2anc 409 | . . . . . . . 8 |
59 | 7 | rpap0d 9659 | . . . . . . . . . . . 12 # |
60 | 21, 36, 59 | divcanap2d 8709 | . . . . . . . . . . 11 |
61 | 60 | oveq2d 5869 | . . . . . . . . . 10 |
62 | 61 | oveq2d 5869 | . . . . . . . . 9 |
63 | 62 | oveq1d 5868 | . . . . . . . 8 |
64 | 58, 63 | eqtrd 2203 | . . . . . . 7 |
65 | 64 | oveq1d 5868 | . . . . . 6 |
66 | 37, 38 | addcld 7939 | . . . . . . 7 |
67 | 56 | sqcld 10607 | . . . . . . 7 |
68 | 66, 67, 33 | addsubd 8251 | . . . . . 6 |
69 | 65, 68 | eqtrd 2203 | . . . . 5 |
70 | 37, 38 | subcld 8230 | . . . . . . 7 |
71 | 70, 67 | addcld 7939 | . . . . . 6 |
72 | 2z 9240 | . . . . . . . . 9 | |
73 | 72 | a1i 9 | . . . . . . . 8 |
74 | 7, 73 | rpexpcld 10633 | . . . . . . 7 |
75 | 74 | rpap0d 9659 | . . . . . 6 # |
76 | 71, 37, 75 | divcanap4d 8713 | . . . . 5 |
77 | 55, 69, 76 | 3eqtr4d 2213 | . . . 4 |
78 | 37, 38, 37 | subdird 8334 | . . . . . . . 8 |
79 | 37 | sqvald 10606 | . . . . . . . . 9 |
80 | 13, 21, 37 | mul32d 8072 | . . . . . . . . . 10 |
81 | 13, 37, 21 | mulassd 7943 | . . . . . . . . . 10 |
82 | 80, 81 | eqtr2d 2204 | . . . . . . . . 9 |
83 | 79, 82 | oveq12d 5871 | . . . . . . . 8 |
84 | 78, 83 | eqtr4d 2206 | . . . . . . 7 |
85 | 21, 36, 59 | sqdivapd 10622 | . . . . . . . . 9 |
86 | 85 | oveq1d 5868 | . . . . . . . 8 |
87 | 21 | sqcld 10607 | . . . . . . . . 9 |
88 | 87, 37, 75 | divcanap1d 8708 | . . . . . . . 8 |
89 | 86, 88 | eqtrd 2203 | . . . . . . 7 |
90 | 84, 89 | oveq12d 5871 | . . . . . 6 |
91 | 70, 67, 37 | adddird 7945 | . . . . . 6 |
92 | binom2sub 10589 | . . . . . . 7 | |
93 | 37, 21, 92 | syl2anc 409 | . . . . . 6 |
94 | 90, 91, 93 | 3eqtr4d 2213 | . . . . 5 |
95 | 94 | oveq1d 5868 | . . . 4 |
96 | 77, 95 | eqtrd 2203 | . . 3 |
97 | 96 | oveq1d 5868 | . 2 |
98 | 37, 21 | subcld 8230 | . . . . 5 |
99 | 98 | sqcld 10607 | . . . 4 |
100 | 99, 37, 23, 75, 28 | divdivap1d 8739 | . . 3 |
101 | 37, 23 | mulcomd 7941 | . . . 4 |
102 | 101 | oveq2d 5869 | . . 3 |
103 | 100, 102 | eqtrd 2203 | . 2 |
104 | 35, 97, 103 | 3eqtrd 2207 | 1 |
Colors of variables: wff set class |
Syntax hints: wi 4 wa 103 wceq 1348 wcel 2141 csn 3583 class class class wbr 3989 cxp 4609 cfv 5198 (class class class)co 5853 cmpo 5855 cc 7772 cr 7773 cc0 7774 c1 7775 caddc 7777 cmul 7779 clt 7954 cle 7955 cmin 8090 cneg 8091 # cap 8500 cdiv 8589 cn 8878 c2 8929 c4 8931 cz 9212 crp 9610 cseq 10401 cexp 10475 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 609 ax-in2 610 ax-io 704 ax-5 1440 ax-7 1441 ax-gen 1442 ax-ie1 1486 ax-ie2 1487 ax-8 1497 ax-10 1498 ax-11 1499 ax-i12 1500 ax-bndl 1502 ax-4 1503 ax-17 1519 ax-i9 1523 ax-ial 1527 ax-i5r 1528 ax-13 2143 ax-14 2144 ax-ext 2152 ax-coll 4104 ax-sep 4107 ax-nul 4115 ax-pow 4160 ax-pr 4194 ax-un 4418 ax-setind 4521 ax-iinf 4572 ax-cnex 7865 ax-resscn 7866 ax-1cn 7867 ax-1re 7868 ax-icn 7869 ax-addcl 7870 ax-addrcl 7871 ax-mulcl 7872 ax-mulrcl 7873 ax-addcom 7874 ax-mulcom 7875 ax-addass 7876 ax-mulass 7877 ax-distr 7878 ax-i2m1 7879 ax-0lt1 7880 ax-1rid 7881 ax-0id 7882 ax-rnegex 7883 ax-precex 7884 ax-cnre 7885 ax-pre-ltirr 7886 ax-pre-ltwlin 7887 ax-pre-lttrn 7888 ax-pre-apti 7889 ax-pre-ltadd 7890 ax-pre-mulgt0 7891 ax-pre-mulext 7892 |
This theorem depends on definitions: df-bi 116 df-dc 830 df-3or 974 df-3an 975 df-tru 1351 df-fal 1354 df-nf 1454 df-sb 1756 df-eu 2022 df-mo 2023 df-clab 2157 df-cleq 2163 df-clel 2166 df-nfc 2301 df-ne 2341 df-nel 2436 df-ral 2453 df-rex 2454 df-reu 2455 df-rmo 2456 df-rab 2457 df-v 2732 df-sbc 2956 df-csb 3050 df-dif 3123 df-un 3125 df-in 3127 df-ss 3134 df-nul 3415 df-if 3527 df-pw 3568 df-sn 3589 df-pr 3590 df-op 3592 df-uni 3797 df-int 3832 df-iun 3875 df-br 3990 df-opab 4051 df-mpt 4052 df-tr 4088 df-id 4278 df-po 4281 df-iso 4282 df-iord 4351 df-on 4353 df-ilim 4354 df-suc 4356 df-iom 4575 df-xp 4617 df-rel 4618 df-cnv 4619 df-co 4620 df-dm 4621 df-rn 4622 df-res 4623 df-ima 4624 df-iota 5160 df-fun 5200 df-fn 5201 df-f 5202 df-f1 5203 df-fo 5204 df-f1o 5205 df-fv 5206 df-riota 5809 df-ov 5856 df-oprab 5857 df-mpo 5858 df-1st 6119 df-2nd 6120 df-recs 6284 df-frec 6370 df-pnf 7956 df-mnf 7957 df-xr 7958 df-ltxr 7959 df-le 7960 df-sub 8092 df-neg 8093 df-reap 8494 df-ap 8501 df-div 8590 df-inn 8879 df-2 8937 df-3 8938 df-4 8939 df-n0 9136 df-z 9213 df-uz 9488 df-rp 9611 df-seqfrec 10402 df-exp 10476 |
This theorem is referenced by: resqrexlemcalc2 10979 |
Copyright terms: Public domain | W3C validator |