Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > resqrexlemcalc1 | Unicode version |
Description: Lemma for resqrex 10968. Some of the calculations involved in showing that the sequence converges. (Contributed by Mario Carneiro and Jim Kingdon, 29-Jul-2021.) |
Ref | Expression |
---|---|
resqrexlemex.seq | |
resqrexlemex.a | |
resqrexlemex.agt0 |
Ref | Expression |
---|---|
resqrexlemcalc1 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | resqrexlemex.seq | . . . . . . . 8 | |
2 | resqrexlemex.a | . . . . . . . 8 | |
3 | resqrexlemex.agt0 | . . . . . . . 8 | |
4 | 1, 2, 3 | resqrexlemfp1 10951 | . . . . . . 7 |
5 | 4 | oveq1d 5857 | . . . . . 6 |
6 | 1, 2, 3 | resqrexlemf 10949 | . . . . . . . . . . 11 |
7 | 6 | ffvelrnda 5620 | . . . . . . . . . 10 |
8 | 7 | rpred 9632 | . . . . . . . . 9 |
9 | 2 | adantr 274 | . . . . . . . . . 10 |
10 | 9, 7 | rerpdivcld 9664 | . . . . . . . . 9 |
11 | 8, 10 | readdcld 7928 | . . . . . . . 8 |
12 | 11 | recnd 7927 | . . . . . . 7 |
13 | 2cnd 8930 | . . . . . . 7 | |
14 | 2ap0 8950 | . . . . . . . 8 # | |
15 | 14 | a1i 9 | . . . . . . 7 # |
16 | 12, 13, 15 | sqdivapd 10601 | . . . . . 6 |
17 | 5, 16 | eqtrd 2198 | . . . . 5 |
18 | sq2 10550 | . . . . . 6 | |
19 | 18 | oveq2i 5853 | . . . . 5 |
20 | 17, 19 | eqtrdi 2215 | . . . 4 |
21 | 9 | recnd 7927 | . . . . . 6 |
22 | 4cn 8935 | . . . . . . 7 | |
23 | 22 | a1i 9 | . . . . . 6 |
24 | 4re 8934 | . . . . . . . 8 | |
25 | 24 | a1i 9 | . . . . . . 7 |
26 | 4pos 8954 | . . . . . . . 8 | |
27 | 26 | a1i 9 | . . . . . . 7 |
28 | 25, 27 | gt0ap0d 8527 | . . . . . 6 # |
29 | 21, 23, 28 | divcanap3d 8691 | . . . . 5 |
30 | 29 | eqcomd 2171 | . . . 4 |
31 | 20, 30 | oveq12d 5860 | . . 3 |
32 | 12 | sqcld 10586 | . . . 4 |
33 | 23, 21 | mulcld 7919 | . . . 4 |
34 | 32, 33, 23, 28 | divsubdirapd 8726 | . . 3 |
35 | 31, 34 | eqtr4d 2201 | . 2 |
36 | 8 | recnd 7927 | . . . . . . . . 9 |
37 | 36 | sqcld 10586 | . . . . . . . 8 |
38 | 13, 21 | mulcld 7919 | . . . . . . . 8 |
39 | 37, 38, 33 | addsubassd 8229 | . . . . . . 7 |
40 | 2cn 8928 | . . . . . . . . . . . 12 | |
41 | 22, 40 | negsubdi2i 8184 | . . . . . . . . . . 11 |
42 | 2p2e4 8984 | . . . . . . . . . . . . . 14 | |
43 | 42 | oveq1i 5852 | . . . . . . . . . . . . 13 |
44 | 40, 40 | pncan3oi 8114 | . . . . . . . . . . . . 13 |
45 | 43, 44 | eqtr3i 2188 | . . . . . . . . . . . 12 |
46 | 45 | negeqi 8092 | . . . . . . . . . . 11 |
47 | 41, 46 | eqtr3i 2188 | . . . . . . . . . 10 |
48 | 47 | oveq1i 5852 | . . . . . . . . 9 |
49 | 13, 23, 21 | subdird 8313 | . . . . . . . . 9 |
50 | 13, 21 | mulneg1d 8309 | . . . . . . . . 9 |
51 | 48, 49, 50 | 3eqtr3a 2223 | . . . . . . . 8 |
52 | 51 | oveq2d 5858 | . . . . . . 7 |
53 | 37, 38 | negsubd 8215 | . . . . . . 7 |
54 | 39, 52, 53 | 3eqtrd 2202 | . . . . . 6 |
55 | 54 | oveq1d 5857 | . . . . 5 |
56 | 10 | recnd 7927 | . . . . . . . . 9 |
57 | binom2 10566 | . . . . . . . . 9 | |
58 | 36, 56, 57 | syl2anc 409 | . . . . . . . 8 |
59 | 7 | rpap0d 9638 | . . . . . . . . . . . 12 # |
60 | 21, 36, 59 | divcanap2d 8688 | . . . . . . . . . . 11 |
61 | 60 | oveq2d 5858 | . . . . . . . . . 10 |
62 | 61 | oveq2d 5858 | . . . . . . . . 9 |
63 | 62 | oveq1d 5857 | . . . . . . . 8 |
64 | 58, 63 | eqtrd 2198 | . . . . . . 7 |
65 | 64 | oveq1d 5857 | . . . . . 6 |
66 | 37, 38 | addcld 7918 | . . . . . . 7 |
67 | 56 | sqcld 10586 | . . . . . . 7 |
68 | 66, 67, 33 | addsubd 8230 | . . . . . 6 |
69 | 65, 68 | eqtrd 2198 | . . . . 5 |
70 | 37, 38 | subcld 8209 | . . . . . . 7 |
71 | 70, 67 | addcld 7918 | . . . . . 6 |
72 | 2z 9219 | . . . . . . . . 9 | |
73 | 72 | a1i 9 | . . . . . . . 8 |
74 | 7, 73 | rpexpcld 10612 | . . . . . . 7 |
75 | 74 | rpap0d 9638 | . . . . . 6 # |
76 | 71, 37, 75 | divcanap4d 8692 | . . . . 5 |
77 | 55, 69, 76 | 3eqtr4d 2208 | . . . 4 |
78 | 37, 38, 37 | subdird 8313 | . . . . . . . 8 |
79 | 37 | sqvald 10585 | . . . . . . . . 9 |
80 | 13, 21, 37 | mul32d 8051 | . . . . . . . . . 10 |
81 | 13, 37, 21 | mulassd 7922 | . . . . . . . . . 10 |
82 | 80, 81 | eqtr2d 2199 | . . . . . . . . 9 |
83 | 79, 82 | oveq12d 5860 | . . . . . . . 8 |
84 | 78, 83 | eqtr4d 2201 | . . . . . . 7 |
85 | 21, 36, 59 | sqdivapd 10601 | . . . . . . . . 9 |
86 | 85 | oveq1d 5857 | . . . . . . . 8 |
87 | 21 | sqcld 10586 | . . . . . . . . 9 |
88 | 87, 37, 75 | divcanap1d 8687 | . . . . . . . 8 |
89 | 86, 88 | eqtrd 2198 | . . . . . . 7 |
90 | 84, 89 | oveq12d 5860 | . . . . . 6 |
91 | 70, 67, 37 | adddird 7924 | . . . . . 6 |
92 | binom2sub 10568 | . . . . . . 7 | |
93 | 37, 21, 92 | syl2anc 409 | . . . . . 6 |
94 | 90, 91, 93 | 3eqtr4d 2208 | . . . . 5 |
95 | 94 | oveq1d 5857 | . . . 4 |
96 | 77, 95 | eqtrd 2198 | . . 3 |
97 | 96 | oveq1d 5857 | . 2 |
98 | 37, 21 | subcld 8209 | . . . . 5 |
99 | 98 | sqcld 10586 | . . . 4 |
100 | 99, 37, 23, 75, 28 | divdivap1d 8718 | . . 3 |
101 | 37, 23 | mulcomd 7920 | . . . 4 |
102 | 101 | oveq2d 5858 | . . 3 |
103 | 100, 102 | eqtrd 2198 | . 2 |
104 | 35, 97, 103 | 3eqtrd 2202 | 1 |
Colors of variables: wff set class |
Syntax hints: wi 4 wa 103 wceq 1343 wcel 2136 csn 3576 class class class wbr 3982 cxp 4602 cfv 5188 (class class class)co 5842 cmpo 5844 cc 7751 cr 7752 cc0 7753 c1 7754 caddc 7756 cmul 7758 clt 7933 cle 7934 cmin 8069 cneg 8070 # cap 8479 cdiv 8568 cn 8857 c2 8908 c4 8910 cz 9191 crp 9589 cseq 10380 cexp 10454 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 604 ax-in2 605 ax-io 699 ax-5 1435 ax-7 1436 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-8 1492 ax-10 1493 ax-11 1494 ax-i12 1495 ax-bndl 1497 ax-4 1498 ax-17 1514 ax-i9 1518 ax-ial 1522 ax-i5r 1523 ax-13 2138 ax-14 2139 ax-ext 2147 ax-coll 4097 ax-sep 4100 ax-nul 4108 ax-pow 4153 ax-pr 4187 ax-un 4411 ax-setind 4514 ax-iinf 4565 ax-cnex 7844 ax-resscn 7845 ax-1cn 7846 ax-1re 7847 ax-icn 7848 ax-addcl 7849 ax-addrcl 7850 ax-mulcl 7851 ax-mulrcl 7852 ax-addcom 7853 ax-mulcom 7854 ax-addass 7855 ax-mulass 7856 ax-distr 7857 ax-i2m1 7858 ax-0lt1 7859 ax-1rid 7860 ax-0id 7861 ax-rnegex 7862 ax-precex 7863 ax-cnre 7864 ax-pre-ltirr 7865 ax-pre-ltwlin 7866 ax-pre-lttrn 7867 ax-pre-apti 7868 ax-pre-ltadd 7869 ax-pre-mulgt0 7870 ax-pre-mulext 7871 |
This theorem depends on definitions: df-bi 116 df-dc 825 df-3or 969 df-3an 970 df-tru 1346 df-fal 1349 df-nf 1449 df-sb 1751 df-eu 2017 df-mo 2018 df-clab 2152 df-cleq 2158 df-clel 2161 df-nfc 2297 df-ne 2337 df-nel 2432 df-ral 2449 df-rex 2450 df-reu 2451 df-rmo 2452 df-rab 2453 df-v 2728 df-sbc 2952 df-csb 3046 df-dif 3118 df-un 3120 df-in 3122 df-ss 3129 df-nul 3410 df-if 3521 df-pw 3561 df-sn 3582 df-pr 3583 df-op 3585 df-uni 3790 df-int 3825 df-iun 3868 df-br 3983 df-opab 4044 df-mpt 4045 df-tr 4081 df-id 4271 df-po 4274 df-iso 4275 df-iord 4344 df-on 4346 df-ilim 4347 df-suc 4349 df-iom 4568 df-xp 4610 df-rel 4611 df-cnv 4612 df-co 4613 df-dm 4614 df-rn 4615 df-res 4616 df-ima 4617 df-iota 5153 df-fun 5190 df-fn 5191 df-f 5192 df-f1 5193 df-fo 5194 df-f1o 5195 df-fv 5196 df-riota 5798 df-ov 5845 df-oprab 5846 df-mpo 5847 df-1st 6108 df-2nd 6109 df-recs 6273 df-frec 6359 df-pnf 7935 df-mnf 7936 df-xr 7937 df-ltxr 7938 df-le 7939 df-sub 8071 df-neg 8072 df-reap 8473 df-ap 8480 df-div 8569 df-inn 8858 df-2 8916 df-3 8917 df-4 8918 df-n0 9115 df-z 9192 df-uz 9467 df-rp 9590 df-seqfrec 10381 df-exp 10455 |
This theorem is referenced by: resqrexlemcalc2 10957 |
Copyright terms: Public domain | W3C validator |