ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  resqrexlemcalc1 Unicode version

Theorem resqrexlemcalc1 11179
Description: Lemma for resqrex 11191. Some of the calculations involved in showing that the sequence converges. (Contributed by Mario Carneiro and Jim Kingdon, 29-Jul-2021.)
Hypotheses
Ref Expression
resqrexlemex.seq  |-  F  =  seq 1 ( ( y  e.  RR+ ,  z  e.  RR+  |->  ( ( y  +  ( A  /  y ) )  /  2 ) ) ,  ( NN  X.  { ( 1  +  A ) } ) )
resqrexlemex.a  |-  ( ph  ->  A  e.  RR )
resqrexlemex.agt0  |-  ( ph  ->  0  <_  A )
Assertion
Ref Expression
resqrexlemcalc1  |-  ( (
ph  /\  N  e.  NN )  ->  ( ( ( F `  ( N  +  1 ) ) ^ 2 )  -  A )  =  ( ( ( ( ( F `  N
) ^ 2 )  -  A ) ^
2 )  /  (
4  x.  ( ( F `  N ) ^ 2 ) ) ) )
Distinct variable groups:    y, A, z    ph, y, z
Allowed substitution hints:    F( y, z)    N( y, z)

Proof of Theorem resqrexlemcalc1
StepHypRef Expression
1 resqrexlemex.seq . . . . . . . 8  |-  F  =  seq 1 ( ( y  e.  RR+ ,  z  e.  RR+  |->  ( ( y  +  ( A  /  y ) )  /  2 ) ) ,  ( NN  X.  { ( 1  +  A ) } ) )
2 resqrexlemex.a . . . . . . . 8  |-  ( ph  ->  A  e.  RR )
3 resqrexlemex.agt0 . . . . . . . 8  |-  ( ph  ->  0  <_  A )
41, 2, 3resqrexlemfp1 11174 . . . . . . 7  |-  ( (
ph  /\  N  e.  NN )  ->  ( F `
 ( N  + 
1 ) )  =  ( ( ( F `
 N )  +  ( A  /  ( F `  N )
) )  /  2
) )
54oveq1d 5937 . . . . . 6  |-  ( (
ph  /\  N  e.  NN )  ->  ( ( F `  ( N  +  1 ) ) ^ 2 )  =  ( ( ( ( F `  N )  +  ( A  / 
( F `  N
) ) )  / 
2 ) ^ 2 ) )
61, 2, 3resqrexlemf 11172 . . . . . . . . . . 11  |-  ( ph  ->  F : NN --> RR+ )
76ffvelcdmda 5697 . . . . . . . . . 10  |-  ( (
ph  /\  N  e.  NN )  ->  ( F `
 N )  e.  RR+ )
87rpred 9771 . . . . . . . . 9  |-  ( (
ph  /\  N  e.  NN )  ->  ( F `
 N )  e.  RR )
92adantr 276 . . . . . . . . . 10  |-  ( (
ph  /\  N  e.  NN )  ->  A  e.  RR )
109, 7rerpdivcld 9803 . . . . . . . . 9  |-  ( (
ph  /\  N  e.  NN )  ->  ( A  /  ( F `  N ) )  e.  RR )
118, 10readdcld 8056 . . . . . . . 8  |-  ( (
ph  /\  N  e.  NN )  ->  ( ( F `  N )  +  ( A  / 
( F `  N
) ) )  e.  RR )
1211recnd 8055 . . . . . . 7  |-  ( (
ph  /\  N  e.  NN )  ->  ( ( F `  N )  +  ( A  / 
( F `  N
) ) )  e.  CC )
13 2cnd 9063 . . . . . . 7  |-  ( (
ph  /\  N  e.  NN )  ->  2  e.  CC )
14 2ap0 9083 . . . . . . . 8  |-  2 #  0
1514a1i 9 . . . . . . 7  |-  ( (
ph  /\  N  e.  NN )  ->  2 #  0 )
1612, 13, 15sqdivapd 10778 . . . . . 6  |-  ( (
ph  /\  N  e.  NN )  ->  ( ( ( ( F `  N )  +  ( A  /  ( F `
 N ) ) )  /  2 ) ^ 2 )  =  ( ( ( ( F `  N )  +  ( A  / 
( F `  N
) ) ) ^
2 )  /  (
2 ^ 2 ) ) )
175, 16eqtrd 2229 . . . . 5  |-  ( (
ph  /\  N  e.  NN )  ->  ( ( F `  ( N  +  1 ) ) ^ 2 )  =  ( ( ( ( F `  N )  +  ( A  / 
( F `  N
) ) ) ^
2 )  /  (
2 ^ 2 ) ) )
18 sq2 10727 . . . . . 6  |-  ( 2 ^ 2 )  =  4
1918oveq2i 5933 . . . . 5  |-  ( ( ( ( F `  N )  +  ( A  /  ( F `
 N ) ) ) ^ 2 )  /  ( 2 ^ 2 ) )  =  ( ( ( ( F `  N )  +  ( A  / 
( F `  N
) ) ) ^
2 )  /  4
)
2017, 19eqtrdi 2245 . . . 4  |-  ( (
ph  /\  N  e.  NN )  ->  ( ( F `  ( N  +  1 ) ) ^ 2 )  =  ( ( ( ( F `  N )  +  ( A  / 
( F `  N
) ) ) ^
2 )  /  4
) )
219recnd 8055 . . . . . 6  |-  ( (
ph  /\  N  e.  NN )  ->  A  e.  CC )
22 4cn 9068 . . . . . . 7  |-  4  e.  CC
2322a1i 9 . . . . . 6  |-  ( (
ph  /\  N  e.  NN )  ->  4  e.  CC )
24 4re 9067 . . . . . . . 8  |-  4  e.  RR
2524a1i 9 . . . . . . 7  |-  ( (
ph  /\  N  e.  NN )  ->  4  e.  RR )
26 4pos 9087 . . . . . . . 8  |-  0  <  4
2726a1i 9 . . . . . . 7  |-  ( (
ph  /\  N  e.  NN )  ->  0  <  4 )
2825, 27gt0ap0d 8656 . . . . . 6  |-  ( (
ph  /\  N  e.  NN )  ->  4 #  0 )
2921, 23, 28divcanap3d 8822 . . . . 5  |-  ( (
ph  /\  N  e.  NN )  ->  ( ( 4  x.  A )  /  4 )  =  A )
3029eqcomd 2202 . . . 4  |-  ( (
ph  /\  N  e.  NN )  ->  A  =  ( ( 4  x.  A )  /  4
) )
3120, 30oveq12d 5940 . . 3  |-  ( (
ph  /\  N  e.  NN )  ->  ( ( ( F `  ( N  +  1 ) ) ^ 2 )  -  A )  =  ( ( ( ( ( F `  N
)  +  ( A  /  ( F `  N ) ) ) ^ 2 )  / 
4 )  -  (
( 4  x.  A
)  /  4 ) ) )
3212sqcld 10763 . . . 4  |-  ( (
ph  /\  N  e.  NN )  ->  ( ( ( F `  N
)  +  ( A  /  ( F `  N ) ) ) ^ 2 )  e.  CC )
3323, 21mulcld 8047 . . . 4  |-  ( (
ph  /\  N  e.  NN )  ->  ( 4  x.  A )  e.  CC )
3432, 33, 23, 28divsubdirapd 8857 . . 3  |-  ( (
ph  /\  N  e.  NN )  ->  ( ( ( ( ( F `
 N )  +  ( A  /  ( F `  N )
) ) ^ 2 )  -  ( 4  x.  A ) )  /  4 )  =  ( ( ( ( ( F `  N
)  +  ( A  /  ( F `  N ) ) ) ^ 2 )  / 
4 )  -  (
( 4  x.  A
)  /  4 ) ) )
3531, 34eqtr4d 2232 . 2  |-  ( (
ph  /\  N  e.  NN )  ->  ( ( ( F `  ( N  +  1 ) ) ^ 2 )  -  A )  =  ( ( ( ( ( F `  N
)  +  ( A  /  ( F `  N ) ) ) ^ 2 )  -  ( 4  x.  A
) )  /  4
) )
368recnd 8055 . . . . . . . . 9  |-  ( (
ph  /\  N  e.  NN )  ->  ( F `
 N )  e.  CC )
3736sqcld 10763 . . . . . . . 8  |-  ( (
ph  /\  N  e.  NN )  ->  ( ( F `  N ) ^ 2 )  e.  CC )
3813, 21mulcld 8047 . . . . . . . 8  |-  ( (
ph  /\  N  e.  NN )  ->  ( 2  x.  A )  e.  CC )
3937, 38, 33addsubassd 8357 . . . . . . 7  |-  ( (
ph  /\  N  e.  NN )  ->  ( ( ( ( F `  N ) ^ 2 )  +  ( 2  x.  A ) )  -  ( 4  x.  A ) )  =  ( ( ( F `
 N ) ^
2 )  +  ( ( 2  x.  A
)  -  ( 4  x.  A ) ) ) )
40 2cn 9061 . . . . . . . . . . . 12  |-  2  e.  CC
4122, 40negsubdi2i 8312 . . . . . . . . . . 11  |-  -u (
4  -  2 )  =  ( 2  -  4 )
42 2p2e4 9117 . . . . . . . . . . . . . 14  |-  ( 2  +  2 )  =  4
4342oveq1i 5932 . . . . . . . . . . . . 13  |-  ( ( 2  +  2 )  -  2 )  =  ( 4  -  2 )
4440, 40pncan3oi 8242 . . . . . . . . . . . . 13  |-  ( ( 2  +  2 )  -  2 )  =  2
4543, 44eqtr3i 2219 . . . . . . . . . . . 12  |-  ( 4  -  2 )  =  2
4645negeqi 8220 . . . . . . . . . . 11  |-  -u (
4  -  2 )  =  -u 2
4741, 46eqtr3i 2219 . . . . . . . . . 10  |-  ( 2  -  4 )  = 
-u 2
4847oveq1i 5932 . . . . . . . . 9  |-  ( ( 2  -  4 )  x.  A )  =  ( -u 2  x.  A )
4913, 23, 21subdird 8441 . . . . . . . . 9  |-  ( (
ph  /\  N  e.  NN )  ->  ( ( 2  -  4 )  x.  A )  =  ( ( 2  x.  A )  -  (
4  x.  A ) ) )
5013, 21mulneg1d 8437 . . . . . . . . 9  |-  ( (
ph  /\  N  e.  NN )  ->  ( -u
2  x.  A )  =  -u ( 2  x.  A ) )
5148, 49, 503eqtr3a 2253 . . . . . . . 8  |-  ( (
ph  /\  N  e.  NN )  ->  ( ( 2  x.  A )  -  ( 4  x.  A ) )  = 
-u ( 2  x.  A ) )
5251oveq2d 5938 . . . . . . 7  |-  ( (
ph  /\  N  e.  NN )  ->  ( ( ( F `  N
) ^ 2 )  +  ( ( 2  x.  A )  -  ( 4  x.  A
) ) )  =  ( ( ( F `
 N ) ^
2 )  +  -u ( 2  x.  A
) ) )
5337, 38negsubd 8343 . . . . . . 7  |-  ( (
ph  /\  N  e.  NN )  ->  ( ( ( F `  N
) ^ 2 )  +  -u ( 2  x.  A ) )  =  ( ( ( F `
 N ) ^
2 )  -  (
2  x.  A ) ) )
5439, 52, 533eqtrd 2233 . . . . . 6  |-  ( (
ph  /\  N  e.  NN )  ->  ( ( ( ( F `  N ) ^ 2 )  +  ( 2  x.  A ) )  -  ( 4  x.  A ) )  =  ( ( ( F `
 N ) ^
2 )  -  (
2  x.  A ) ) )
5554oveq1d 5937 . . . . 5  |-  ( (
ph  /\  N  e.  NN )  ->  ( ( ( ( ( F `
 N ) ^
2 )  +  ( 2  x.  A ) )  -  ( 4  x.  A ) )  +  ( ( A  /  ( F `  N ) ) ^
2 ) )  =  ( ( ( ( F `  N ) ^ 2 )  -  ( 2  x.  A
) )  +  ( ( A  /  ( F `  N )
) ^ 2 ) ) )
5610recnd 8055 . . . . . . . . 9  |-  ( (
ph  /\  N  e.  NN )  ->  ( A  /  ( F `  N ) )  e.  CC )
57 binom2 10743 . . . . . . . . 9  |-  ( ( ( F `  N
)  e.  CC  /\  ( A  /  ( F `  N )
)  e.  CC )  ->  ( ( ( F `  N )  +  ( A  / 
( F `  N
) ) ) ^
2 )  =  ( ( ( ( F `
 N ) ^
2 )  +  ( 2  x.  ( ( F `  N )  x.  ( A  / 
( F `  N
) ) ) ) )  +  ( ( A  /  ( F `
 N ) ) ^ 2 ) ) )
5836, 56, 57syl2anc 411 . . . . . . . 8  |-  ( (
ph  /\  N  e.  NN )  ->  ( ( ( F `  N
)  +  ( A  /  ( F `  N ) ) ) ^ 2 )  =  ( ( ( ( F `  N ) ^ 2 )  +  ( 2  x.  (
( F `  N
)  x.  ( A  /  ( F `  N ) ) ) ) )  +  ( ( A  /  ( F `  N )
) ^ 2 ) ) )
597rpap0d 9777 . . . . . . . . . . . 12  |-  ( (
ph  /\  N  e.  NN )  ->  ( F `
 N ) #  0 )
6021, 36, 59divcanap2d 8819 . . . . . . . . . . 11  |-  ( (
ph  /\  N  e.  NN )  ->  ( ( F `  N )  x.  ( A  / 
( F `  N
) ) )  =  A )
6160oveq2d 5938 . . . . . . . . . 10  |-  ( (
ph  /\  N  e.  NN )  ->  ( 2  x.  ( ( F `
 N )  x.  ( A  /  ( F `  N )
) ) )  =  ( 2  x.  A
) )
6261oveq2d 5938 . . . . . . . . 9  |-  ( (
ph  /\  N  e.  NN )  ->  ( ( ( F `  N
) ^ 2 )  +  ( 2  x.  ( ( F `  N )  x.  ( A  /  ( F `  N ) ) ) ) )  =  ( ( ( F `  N ) ^ 2 )  +  ( 2  x.  A ) ) )
6362oveq1d 5937 . . . . . . . 8  |-  ( (
ph  /\  N  e.  NN )  ->  ( ( ( ( F `  N ) ^ 2 )  +  ( 2  x.  ( ( F `
 N )  x.  ( A  /  ( F `  N )
) ) ) )  +  ( ( A  /  ( F `  N ) ) ^
2 ) )  =  ( ( ( ( F `  N ) ^ 2 )  +  ( 2  x.  A
) )  +  ( ( A  /  ( F `  N )
) ^ 2 ) ) )
6458, 63eqtrd 2229 . . . . . . 7  |-  ( (
ph  /\  N  e.  NN )  ->  ( ( ( F `  N
)  +  ( A  /  ( F `  N ) ) ) ^ 2 )  =  ( ( ( ( F `  N ) ^ 2 )  +  ( 2  x.  A
) )  +  ( ( A  /  ( F `  N )
) ^ 2 ) ) )
6564oveq1d 5937 . . . . . 6  |-  ( (
ph  /\  N  e.  NN )  ->  ( ( ( ( F `  N )  +  ( A  /  ( F `
 N ) ) ) ^ 2 )  -  ( 4  x.  A ) )  =  ( ( ( ( ( F `  N
) ^ 2 )  +  ( 2  x.  A ) )  +  ( ( A  / 
( F `  N
) ) ^ 2 ) )  -  (
4  x.  A ) ) )
6637, 38addcld 8046 . . . . . . 7  |-  ( (
ph  /\  N  e.  NN )  ->  ( ( ( F `  N
) ^ 2 )  +  ( 2  x.  A ) )  e.  CC )
6756sqcld 10763 . . . . . . 7  |-  ( (
ph  /\  N  e.  NN )  ->  ( ( A  /  ( F `
 N ) ) ^ 2 )  e.  CC )
6866, 67, 33addsubd 8358 . . . . . 6  |-  ( (
ph  /\  N  e.  NN )  ->  ( ( ( ( ( F `
 N ) ^
2 )  +  ( 2  x.  A ) )  +  ( ( A  /  ( F `
 N ) ) ^ 2 ) )  -  ( 4  x.  A ) )  =  ( ( ( ( ( F `  N
) ^ 2 )  +  ( 2  x.  A ) )  -  ( 4  x.  A
) )  +  ( ( A  /  ( F `  N )
) ^ 2 ) ) )
6965, 68eqtrd 2229 . . . . 5  |-  ( (
ph  /\  N  e.  NN )  ->  ( ( ( ( F `  N )  +  ( A  /  ( F `
 N ) ) ) ^ 2 )  -  ( 4  x.  A ) )  =  ( ( ( ( ( F `  N
) ^ 2 )  +  ( 2  x.  A ) )  -  ( 4  x.  A
) )  +  ( ( A  /  ( F `  N )
) ^ 2 ) ) )
7037, 38subcld 8337 . . . . . . 7  |-  ( (
ph  /\  N  e.  NN )  ->  ( ( ( F `  N
) ^ 2 )  -  ( 2  x.  A ) )  e.  CC )
7170, 67addcld 8046 . . . . . 6  |-  ( (
ph  /\  N  e.  NN )  ->  ( ( ( ( F `  N ) ^ 2 )  -  ( 2  x.  A ) )  +  ( ( A  /  ( F `  N ) ) ^
2 ) )  e.  CC )
72 2z 9354 . . . . . . . . 9  |-  2  e.  ZZ
7372a1i 9 . . . . . . . 8  |-  ( (
ph  /\  N  e.  NN )  ->  2  e.  ZZ )
747, 73rpexpcld 10789 . . . . . . 7  |-  ( (
ph  /\  N  e.  NN )  ->  ( ( F `  N ) ^ 2 )  e.  RR+ )
7574rpap0d 9777 . . . . . 6  |-  ( (
ph  /\  N  e.  NN )  ->  ( ( F `  N ) ^ 2 ) #  0 )
7671, 37, 75divcanap4d 8823 . . . . 5  |-  ( (
ph  /\  N  e.  NN )  ->  ( ( ( ( ( ( F `  N ) ^ 2 )  -  ( 2  x.  A
) )  +  ( ( A  /  ( F `  N )
) ^ 2 ) )  x.  ( ( F `  N ) ^ 2 ) )  /  ( ( F `
 N ) ^
2 ) )  =  ( ( ( ( F `  N ) ^ 2 )  -  ( 2  x.  A
) )  +  ( ( A  /  ( F `  N )
) ^ 2 ) ) )
7755, 69, 763eqtr4d 2239 . . . 4  |-  ( (
ph  /\  N  e.  NN )  ->  ( ( ( ( F `  N )  +  ( A  /  ( F `
 N ) ) ) ^ 2 )  -  ( 4  x.  A ) )  =  ( ( ( ( ( ( F `  N ) ^ 2 )  -  ( 2  x.  A ) )  +  ( ( A  /  ( F `  N ) ) ^
2 ) )  x.  ( ( F `  N ) ^ 2 ) )  /  (
( F `  N
) ^ 2 ) ) )
7837, 38, 37subdird 8441 . . . . . . . 8  |-  ( (
ph  /\  N  e.  NN )  ->  ( ( ( ( F `  N ) ^ 2 )  -  ( 2  x.  A ) )  x.  ( ( F `
 N ) ^
2 ) )  =  ( ( ( ( F `  N ) ^ 2 )  x.  ( ( F `  N ) ^ 2 ) )  -  (
( 2  x.  A
)  x.  ( ( F `  N ) ^ 2 ) ) ) )
7937sqvald 10762 . . . . . . . . 9  |-  ( (
ph  /\  N  e.  NN )  ->  ( ( ( F `  N
) ^ 2 ) ^ 2 )  =  ( ( ( F `
 N ) ^
2 )  x.  (
( F `  N
) ^ 2 ) ) )
8013, 21, 37mul32d 8179 . . . . . . . . . 10  |-  ( (
ph  /\  N  e.  NN )  ->  ( ( 2  x.  A )  x.  ( ( F `
 N ) ^
2 ) )  =  ( ( 2  x.  ( ( F `  N ) ^ 2 ) )  x.  A
) )
8113, 37, 21mulassd 8050 . . . . . . . . . 10  |-  ( (
ph  /\  N  e.  NN )  ->  ( ( 2  x.  ( ( F `  N ) ^ 2 ) )  x.  A )  =  ( 2  x.  (
( ( F `  N ) ^ 2 )  x.  A ) ) )
8280, 81eqtr2d 2230 . . . . . . . . 9  |-  ( (
ph  /\  N  e.  NN )  ->  ( 2  x.  ( ( ( F `  N ) ^ 2 )  x.  A ) )  =  ( ( 2  x.  A )  x.  (
( F `  N
) ^ 2 ) ) )
8379, 82oveq12d 5940 . . . . . . . 8  |-  ( (
ph  /\  N  e.  NN )  ->  ( ( ( ( F `  N ) ^ 2 ) ^ 2 )  -  ( 2  x.  ( ( ( F `
 N ) ^
2 )  x.  A
) ) )  =  ( ( ( ( F `  N ) ^ 2 )  x.  ( ( F `  N ) ^ 2 ) )  -  (
( 2  x.  A
)  x.  ( ( F `  N ) ^ 2 ) ) ) )
8478, 83eqtr4d 2232 . . . . . . 7  |-  ( (
ph  /\  N  e.  NN )  ->  ( ( ( ( F `  N ) ^ 2 )  -  ( 2  x.  A ) )  x.  ( ( F `
 N ) ^
2 ) )  =  ( ( ( ( F `  N ) ^ 2 ) ^
2 )  -  (
2  x.  ( ( ( F `  N
) ^ 2 )  x.  A ) ) ) )
8521, 36, 59sqdivapd 10778 . . . . . . . . 9  |-  ( (
ph  /\  N  e.  NN )  ->  ( ( A  /  ( F `
 N ) ) ^ 2 )  =  ( ( A ^
2 )  /  (
( F `  N
) ^ 2 ) ) )
8685oveq1d 5937 . . . . . . . 8  |-  ( (
ph  /\  N  e.  NN )  ->  ( ( ( A  /  ( F `  N )
) ^ 2 )  x.  ( ( F `
 N ) ^
2 ) )  =  ( ( ( A ^ 2 )  / 
( ( F `  N ) ^ 2 ) )  x.  (
( F `  N
) ^ 2 ) ) )
8721sqcld 10763 . . . . . . . . 9  |-  ( (
ph  /\  N  e.  NN )  ->  ( A ^ 2 )  e.  CC )
8887, 37, 75divcanap1d 8818 . . . . . . . 8  |-  ( (
ph  /\  N  e.  NN )  ->  ( ( ( A ^ 2 )  /  ( ( F `  N ) ^ 2 ) )  x.  ( ( F `
 N ) ^
2 ) )  =  ( A ^ 2 ) )
8986, 88eqtrd 2229 . . . . . . 7  |-  ( (
ph  /\  N  e.  NN )  ->  ( ( ( A  /  ( F `  N )
) ^ 2 )  x.  ( ( F `
 N ) ^
2 ) )  =  ( A ^ 2 ) )
9084, 89oveq12d 5940 . . . . . 6  |-  ( (
ph  /\  N  e.  NN )  ->  ( ( ( ( ( F `
 N ) ^
2 )  -  (
2  x.  A ) )  x.  ( ( F `  N ) ^ 2 ) )  +  ( ( ( A  /  ( F `
 N ) ) ^ 2 )  x.  ( ( F `  N ) ^ 2 ) ) )  =  ( ( ( ( ( F `  N
) ^ 2 ) ^ 2 )  -  ( 2  x.  (
( ( F `  N ) ^ 2 )  x.  A ) ) )  +  ( A ^ 2 ) ) )
9170, 67, 37adddird 8052 . . . . . 6  |-  ( (
ph  /\  N  e.  NN )  ->  ( ( ( ( ( F `
 N ) ^
2 )  -  (
2  x.  A ) )  +  ( ( A  /  ( F `
 N ) ) ^ 2 ) )  x.  ( ( F `
 N ) ^
2 ) )  =  ( ( ( ( ( F `  N
) ^ 2 )  -  ( 2  x.  A ) )  x.  ( ( F `  N ) ^ 2 ) )  +  ( ( ( A  / 
( F `  N
) ) ^ 2 )  x.  ( ( F `  N ) ^ 2 ) ) ) )
92 binom2sub 10745 . . . . . . 7  |-  ( ( ( ( F `  N ) ^ 2 )  e.  CC  /\  A  e.  CC )  ->  ( ( ( ( F `  N ) ^ 2 )  -  A ) ^ 2 )  =  ( ( ( ( ( F `
 N ) ^
2 ) ^ 2 )  -  ( 2  x.  ( ( ( F `  N ) ^ 2 )  x.  A ) ) )  +  ( A ^
2 ) ) )
9337, 21, 92syl2anc 411 . . . . . 6  |-  ( (
ph  /\  N  e.  NN )  ->  ( ( ( ( F `  N ) ^ 2 )  -  A ) ^ 2 )  =  ( ( ( ( ( F `  N
) ^ 2 ) ^ 2 )  -  ( 2  x.  (
( ( F `  N ) ^ 2 )  x.  A ) ) )  +  ( A ^ 2 ) ) )
9490, 91, 933eqtr4d 2239 . . . . 5  |-  ( (
ph  /\  N  e.  NN )  ->  ( ( ( ( ( F `
 N ) ^
2 )  -  (
2  x.  A ) )  +  ( ( A  /  ( F `
 N ) ) ^ 2 ) )  x.  ( ( F `
 N ) ^
2 ) )  =  ( ( ( ( F `  N ) ^ 2 )  -  A ) ^ 2 ) )
9594oveq1d 5937 . . . 4  |-  ( (
ph  /\  N  e.  NN )  ->  ( ( ( ( ( ( F `  N ) ^ 2 )  -  ( 2  x.  A
) )  +  ( ( A  /  ( F `  N )
) ^ 2 ) )  x.  ( ( F `  N ) ^ 2 ) )  /  ( ( F `
 N ) ^
2 ) )  =  ( ( ( ( ( F `  N
) ^ 2 )  -  A ) ^
2 )  /  (
( F `  N
) ^ 2 ) ) )
9677, 95eqtrd 2229 . . 3  |-  ( (
ph  /\  N  e.  NN )  ->  ( ( ( ( F `  N )  +  ( A  /  ( F `
 N ) ) ) ^ 2 )  -  ( 4  x.  A ) )  =  ( ( ( ( ( F `  N
) ^ 2 )  -  A ) ^
2 )  /  (
( F `  N
) ^ 2 ) ) )
9796oveq1d 5937 . 2  |-  ( (
ph  /\  N  e.  NN )  ->  ( ( ( ( ( F `
 N )  +  ( A  /  ( F `  N )
) ) ^ 2 )  -  ( 4  x.  A ) )  /  4 )  =  ( ( ( ( ( ( F `  N ) ^ 2 )  -  A ) ^ 2 )  / 
( ( F `  N ) ^ 2 ) )  /  4
) )
9837, 21subcld 8337 . . . . 5  |-  ( (
ph  /\  N  e.  NN )  ->  ( ( ( F `  N
) ^ 2 )  -  A )  e.  CC )
9998sqcld 10763 . . . 4  |-  ( (
ph  /\  N  e.  NN )  ->  ( ( ( ( F `  N ) ^ 2 )  -  A ) ^ 2 )  e.  CC )
10099, 37, 23, 75, 28divdivap1d 8849 . . 3  |-  ( (
ph  /\  N  e.  NN )  ->  ( ( ( ( ( ( F `  N ) ^ 2 )  -  A ) ^ 2 )  /  ( ( F `  N ) ^ 2 ) )  /  4 )  =  ( ( ( ( ( F `  N
) ^ 2 )  -  A ) ^
2 )  /  (
( ( F `  N ) ^ 2 )  x.  4 ) ) )
10137, 23mulcomd 8048 . . . 4  |-  ( (
ph  /\  N  e.  NN )  ->  ( ( ( F `  N
) ^ 2 )  x.  4 )  =  ( 4  x.  (
( F `  N
) ^ 2 ) ) )
102101oveq2d 5938 . . 3  |-  ( (
ph  /\  N  e.  NN )  ->  ( ( ( ( ( F `
 N ) ^
2 )  -  A
) ^ 2 )  /  ( ( ( F `  N ) ^ 2 )  x.  4 ) )  =  ( ( ( ( ( F `  N
) ^ 2 )  -  A ) ^
2 )  /  (
4  x.  ( ( F `  N ) ^ 2 ) ) ) )
103100, 102eqtrd 2229 . 2  |-  ( (
ph  /\  N  e.  NN )  ->  ( ( ( ( ( ( F `  N ) ^ 2 )  -  A ) ^ 2 )  /  ( ( F `  N ) ^ 2 ) )  /  4 )  =  ( ( ( ( ( F `  N
) ^ 2 )  -  A ) ^
2 )  /  (
4  x.  ( ( F `  N ) ^ 2 ) ) ) )
10435, 97, 1033eqtrd 2233 1  |-  ( (
ph  /\  N  e.  NN )  ->  ( ( ( F `  ( N  +  1 ) ) ^ 2 )  -  A )  =  ( ( ( ( ( F `  N
) ^ 2 )  -  A ) ^
2 )  /  (
4  x.  ( ( F `  N ) ^ 2 ) ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    = wceq 1364    e. wcel 2167   {csn 3622   class class class wbr 4033    X. cxp 4661   ` cfv 5258  (class class class)co 5922    e. cmpo 5924   CCcc 7877   RRcr 7878   0cc0 7879   1c1 7880    + caddc 7882    x. cmul 7884    < clt 8061    <_ cle 8062    - cmin 8197   -ucneg 8198   # cap 8608    / cdiv 8699   NNcn 8990   2c2 9041   4c4 9043   ZZcz 9326   RR+crp 9728    seqcseq 10539   ^cexp 10630
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-13 2169  ax-14 2170  ax-ext 2178  ax-coll 4148  ax-sep 4151  ax-nul 4159  ax-pow 4207  ax-pr 4242  ax-un 4468  ax-setind 4573  ax-iinf 4624  ax-cnex 7970  ax-resscn 7971  ax-1cn 7972  ax-1re 7973  ax-icn 7974  ax-addcl 7975  ax-addrcl 7976  ax-mulcl 7977  ax-mulrcl 7978  ax-addcom 7979  ax-mulcom 7980  ax-addass 7981  ax-mulass 7982  ax-distr 7983  ax-i2m1 7984  ax-0lt1 7985  ax-1rid 7986  ax-0id 7987  ax-rnegex 7988  ax-precex 7989  ax-cnre 7990  ax-pre-ltirr 7991  ax-pre-ltwlin 7992  ax-pre-lttrn 7993  ax-pre-apti 7994  ax-pre-ltadd 7995  ax-pre-mulgt0 7996  ax-pre-mulext 7997
This theorem depends on definitions:  df-bi 117  df-dc 836  df-3or 981  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1475  df-sb 1777  df-eu 2048  df-mo 2049  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ne 2368  df-nel 2463  df-ral 2480  df-rex 2481  df-reu 2482  df-rmo 2483  df-rab 2484  df-v 2765  df-sbc 2990  df-csb 3085  df-dif 3159  df-un 3161  df-in 3163  df-ss 3170  df-nul 3451  df-if 3562  df-pw 3607  df-sn 3628  df-pr 3629  df-op 3631  df-uni 3840  df-int 3875  df-iun 3918  df-br 4034  df-opab 4095  df-mpt 4096  df-tr 4132  df-id 4328  df-po 4331  df-iso 4332  df-iord 4401  df-on 4403  df-ilim 4404  df-suc 4406  df-iom 4627  df-xp 4669  df-rel 4670  df-cnv 4671  df-co 4672  df-dm 4673  df-rn 4674  df-res 4675  df-ima 4676  df-iota 5219  df-fun 5260  df-fn 5261  df-f 5262  df-f1 5263  df-fo 5264  df-f1o 5265  df-fv 5266  df-riota 5877  df-ov 5925  df-oprab 5926  df-mpo 5927  df-1st 6198  df-2nd 6199  df-recs 6363  df-frec 6449  df-pnf 8063  df-mnf 8064  df-xr 8065  df-ltxr 8066  df-le 8067  df-sub 8199  df-neg 8200  df-reap 8602  df-ap 8609  df-div 8700  df-inn 8991  df-2 9049  df-3 9050  df-4 9051  df-n0 9250  df-z 9327  df-uz 9602  df-rp 9729  df-seqfrec 10540  df-exp 10631
This theorem is referenced by:  resqrexlemcalc2  11180
  Copyright terms: Public domain W3C validator