ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  resqrexlemcalc1 Unicode version

Theorem resqrexlemcalc1 10779
Description: Lemma for resqrex 10791. Some of the calculations involved in showing that the sequence converges. (Contributed by Mario Carneiro and Jim Kingdon, 29-Jul-2021.)
Hypotheses
Ref Expression
resqrexlemex.seq  |-  F  =  seq 1 ( ( y  e.  RR+ ,  z  e.  RR+  |->  ( ( y  +  ( A  /  y ) )  /  2 ) ) ,  ( NN  X.  { ( 1  +  A ) } ) )
resqrexlemex.a  |-  ( ph  ->  A  e.  RR )
resqrexlemex.agt0  |-  ( ph  ->  0  <_  A )
Assertion
Ref Expression
resqrexlemcalc1  |-  ( (
ph  /\  N  e.  NN )  ->  ( ( ( F `  ( N  +  1 ) ) ^ 2 )  -  A )  =  ( ( ( ( ( F `  N
) ^ 2 )  -  A ) ^
2 )  /  (
4  x.  ( ( F `  N ) ^ 2 ) ) ) )
Distinct variable groups:    y, A, z    ph, y, z
Allowed substitution hints:    F( y, z)    N( y, z)

Proof of Theorem resqrexlemcalc1
StepHypRef Expression
1 resqrexlemex.seq . . . . . . . 8  |-  F  =  seq 1 ( ( y  e.  RR+ ,  z  e.  RR+  |->  ( ( y  +  ( A  /  y ) )  /  2 ) ) ,  ( NN  X.  { ( 1  +  A ) } ) )
2 resqrexlemex.a . . . . . . . 8  |-  ( ph  ->  A  e.  RR )
3 resqrexlemex.agt0 . . . . . . . 8  |-  ( ph  ->  0  <_  A )
41, 2, 3resqrexlemfp1 10774 . . . . . . 7  |-  ( (
ph  /\  N  e.  NN )  ->  ( F `
 ( N  + 
1 ) )  =  ( ( ( F `
 N )  +  ( A  /  ( F `  N )
) )  /  2
) )
54oveq1d 5782 . . . . . 6  |-  ( (
ph  /\  N  e.  NN )  ->  ( ( F `  ( N  +  1 ) ) ^ 2 )  =  ( ( ( ( F `  N )  +  ( A  / 
( F `  N
) ) )  / 
2 ) ^ 2 ) )
61, 2, 3resqrexlemf 10772 . . . . . . . . . . 11  |-  ( ph  ->  F : NN --> RR+ )
76ffvelrnda 5548 . . . . . . . . . 10  |-  ( (
ph  /\  N  e.  NN )  ->  ( F `
 N )  e.  RR+ )
87rpred 9476 . . . . . . . . 9  |-  ( (
ph  /\  N  e.  NN )  ->  ( F `
 N )  e.  RR )
92adantr 274 . . . . . . . . . 10  |-  ( (
ph  /\  N  e.  NN )  ->  A  e.  RR )
109, 7rerpdivcld 9508 . . . . . . . . 9  |-  ( (
ph  /\  N  e.  NN )  ->  ( A  /  ( F `  N ) )  e.  RR )
118, 10readdcld 7788 . . . . . . . 8  |-  ( (
ph  /\  N  e.  NN )  ->  ( ( F `  N )  +  ( A  / 
( F `  N
) ) )  e.  RR )
1211recnd 7787 . . . . . . 7  |-  ( (
ph  /\  N  e.  NN )  ->  ( ( F `  N )  +  ( A  / 
( F `  N
) ) )  e.  CC )
13 2cnd 8786 . . . . . . 7  |-  ( (
ph  /\  N  e.  NN )  ->  2  e.  CC )
14 2ap0 8806 . . . . . . . 8  |-  2 #  0
1514a1i 9 . . . . . . 7  |-  ( (
ph  /\  N  e.  NN )  ->  2 #  0 )
1612, 13, 15sqdivapd 10430 . . . . . 6  |-  ( (
ph  /\  N  e.  NN )  ->  ( ( ( ( F `  N )  +  ( A  /  ( F `
 N ) ) )  /  2 ) ^ 2 )  =  ( ( ( ( F `  N )  +  ( A  / 
( F `  N
) ) ) ^
2 )  /  (
2 ^ 2 ) ) )
175, 16eqtrd 2170 . . . . 5  |-  ( (
ph  /\  N  e.  NN )  ->  ( ( F `  ( N  +  1 ) ) ^ 2 )  =  ( ( ( ( F `  N )  +  ( A  / 
( F `  N
) ) ) ^
2 )  /  (
2 ^ 2 ) ) )
18 sq2 10381 . . . . . 6  |-  ( 2 ^ 2 )  =  4
1918oveq2i 5778 . . . . 5  |-  ( ( ( ( F `  N )  +  ( A  /  ( F `
 N ) ) ) ^ 2 )  /  ( 2 ^ 2 ) )  =  ( ( ( ( F `  N )  +  ( A  / 
( F `  N
) ) ) ^
2 )  /  4
)
2017, 19syl6eq 2186 . . . 4  |-  ( (
ph  /\  N  e.  NN )  ->  ( ( F `  ( N  +  1 ) ) ^ 2 )  =  ( ( ( ( F `  N )  +  ( A  / 
( F `  N
) ) ) ^
2 )  /  4
) )
219recnd 7787 . . . . . 6  |-  ( (
ph  /\  N  e.  NN )  ->  A  e.  CC )
22 4cn 8791 . . . . . . 7  |-  4  e.  CC
2322a1i 9 . . . . . 6  |-  ( (
ph  /\  N  e.  NN )  ->  4  e.  CC )
24 4re 8790 . . . . . . . 8  |-  4  e.  RR
2524a1i 9 . . . . . . 7  |-  ( (
ph  /\  N  e.  NN )  ->  4  e.  RR )
26 4pos 8810 . . . . . . . 8  |-  0  <  4
2726a1i 9 . . . . . . 7  |-  ( (
ph  /\  N  e.  NN )  ->  0  <  4 )
2825, 27gt0ap0d 8384 . . . . . 6  |-  ( (
ph  /\  N  e.  NN )  ->  4 #  0 )
2921, 23, 28divcanap3d 8548 . . . . 5  |-  ( (
ph  /\  N  e.  NN )  ->  ( ( 4  x.  A )  /  4 )  =  A )
3029eqcomd 2143 . . . 4  |-  ( (
ph  /\  N  e.  NN )  ->  A  =  ( ( 4  x.  A )  /  4
) )
3120, 30oveq12d 5785 . . 3  |-  ( (
ph  /\  N  e.  NN )  ->  ( ( ( F `  ( N  +  1 ) ) ^ 2 )  -  A )  =  ( ( ( ( ( F `  N
)  +  ( A  /  ( F `  N ) ) ) ^ 2 )  / 
4 )  -  (
( 4  x.  A
)  /  4 ) ) )
3212sqcld 10415 . . . 4  |-  ( (
ph  /\  N  e.  NN )  ->  ( ( ( F `  N
)  +  ( A  /  ( F `  N ) ) ) ^ 2 )  e.  CC )
3323, 21mulcld 7779 . . . 4  |-  ( (
ph  /\  N  e.  NN )  ->  ( 4  x.  A )  e.  CC )
3432, 33, 23, 28divsubdirapd 8583 . . 3  |-  ( (
ph  /\  N  e.  NN )  ->  ( ( ( ( ( F `
 N )  +  ( A  /  ( F `  N )
) ) ^ 2 )  -  ( 4  x.  A ) )  /  4 )  =  ( ( ( ( ( F `  N
)  +  ( A  /  ( F `  N ) ) ) ^ 2 )  / 
4 )  -  (
( 4  x.  A
)  /  4 ) ) )
3531, 34eqtr4d 2173 . 2  |-  ( (
ph  /\  N  e.  NN )  ->  ( ( ( F `  ( N  +  1 ) ) ^ 2 )  -  A )  =  ( ( ( ( ( F `  N
)  +  ( A  /  ( F `  N ) ) ) ^ 2 )  -  ( 4  x.  A
) )  /  4
) )
368recnd 7787 . . . . . . . . 9  |-  ( (
ph  /\  N  e.  NN )  ->  ( F `
 N )  e.  CC )
3736sqcld 10415 . . . . . . . 8  |-  ( (
ph  /\  N  e.  NN )  ->  ( ( F `  N ) ^ 2 )  e.  CC )
3813, 21mulcld 7779 . . . . . . . 8  |-  ( (
ph  /\  N  e.  NN )  ->  ( 2  x.  A )  e.  CC )
3937, 38, 33addsubassd 8086 . . . . . . 7  |-  ( (
ph  /\  N  e.  NN )  ->  ( ( ( ( F `  N ) ^ 2 )  +  ( 2  x.  A ) )  -  ( 4  x.  A ) )  =  ( ( ( F `
 N ) ^
2 )  +  ( ( 2  x.  A
)  -  ( 4  x.  A ) ) ) )
40 2cn 8784 . . . . . . . . . . . 12  |-  2  e.  CC
4122, 40negsubdi2i 8041 . . . . . . . . . . 11  |-  -u (
4  -  2 )  =  ( 2  -  4 )
42 2p2e4 8840 . . . . . . . . . . . . . 14  |-  ( 2  +  2 )  =  4
4342oveq1i 5777 . . . . . . . . . . . . 13  |-  ( ( 2  +  2 )  -  2 )  =  ( 4  -  2 )
4440, 40pncan3oi 7971 . . . . . . . . . . . . 13  |-  ( ( 2  +  2 )  -  2 )  =  2
4543, 44eqtr3i 2160 . . . . . . . . . . . 12  |-  ( 4  -  2 )  =  2
4645negeqi 7949 . . . . . . . . . . 11  |-  -u (
4  -  2 )  =  -u 2
4741, 46eqtr3i 2160 . . . . . . . . . 10  |-  ( 2  -  4 )  = 
-u 2
4847oveq1i 5777 . . . . . . . . 9  |-  ( ( 2  -  4 )  x.  A )  =  ( -u 2  x.  A )
4913, 23, 21subdird 8170 . . . . . . . . 9  |-  ( (
ph  /\  N  e.  NN )  ->  ( ( 2  -  4 )  x.  A )  =  ( ( 2  x.  A )  -  (
4  x.  A ) ) )
5013, 21mulneg1d 8166 . . . . . . . . 9  |-  ( (
ph  /\  N  e.  NN )  ->  ( -u
2  x.  A )  =  -u ( 2  x.  A ) )
5148, 49, 503eqtr3a 2194 . . . . . . . 8  |-  ( (
ph  /\  N  e.  NN )  ->  ( ( 2  x.  A )  -  ( 4  x.  A ) )  = 
-u ( 2  x.  A ) )
5251oveq2d 5783 . . . . . . 7  |-  ( (
ph  /\  N  e.  NN )  ->  ( ( ( F `  N
) ^ 2 )  +  ( ( 2  x.  A )  -  ( 4  x.  A
) ) )  =  ( ( ( F `
 N ) ^
2 )  +  -u ( 2  x.  A
) ) )
5337, 38negsubd 8072 . . . . . . 7  |-  ( (
ph  /\  N  e.  NN )  ->  ( ( ( F `  N
) ^ 2 )  +  -u ( 2  x.  A ) )  =  ( ( ( F `
 N ) ^
2 )  -  (
2  x.  A ) ) )
5439, 52, 533eqtrd 2174 . . . . . 6  |-  ( (
ph  /\  N  e.  NN )  ->  ( ( ( ( F `  N ) ^ 2 )  +  ( 2  x.  A ) )  -  ( 4  x.  A ) )  =  ( ( ( F `
 N ) ^
2 )  -  (
2  x.  A ) ) )
5554oveq1d 5782 . . . . 5  |-  ( (
ph  /\  N  e.  NN )  ->  ( ( ( ( ( F `
 N ) ^
2 )  +  ( 2  x.  A ) )  -  ( 4  x.  A ) )  +  ( ( A  /  ( F `  N ) ) ^
2 ) )  =  ( ( ( ( F `  N ) ^ 2 )  -  ( 2  x.  A
) )  +  ( ( A  /  ( F `  N )
) ^ 2 ) ) )
5610recnd 7787 . . . . . . . . 9  |-  ( (
ph  /\  N  e.  NN )  ->  ( A  /  ( F `  N ) )  e.  CC )
57 binom2 10396 . . . . . . . . 9  |-  ( ( ( F `  N
)  e.  CC  /\  ( A  /  ( F `  N )
)  e.  CC )  ->  ( ( ( F `  N )  +  ( A  / 
( F `  N
) ) ) ^
2 )  =  ( ( ( ( F `
 N ) ^
2 )  +  ( 2  x.  ( ( F `  N )  x.  ( A  / 
( F `  N
) ) ) ) )  +  ( ( A  /  ( F `
 N ) ) ^ 2 ) ) )
5836, 56, 57syl2anc 408 . . . . . . . 8  |-  ( (
ph  /\  N  e.  NN )  ->  ( ( ( F `  N
)  +  ( A  /  ( F `  N ) ) ) ^ 2 )  =  ( ( ( ( F `  N ) ^ 2 )  +  ( 2  x.  (
( F `  N
)  x.  ( A  /  ( F `  N ) ) ) ) )  +  ( ( A  /  ( F `  N )
) ^ 2 ) ) )
597rpap0d 9482 . . . . . . . . . . . 12  |-  ( (
ph  /\  N  e.  NN )  ->  ( F `
 N ) #  0 )
6021, 36, 59divcanap2d 8545 . . . . . . . . . . 11  |-  ( (
ph  /\  N  e.  NN )  ->  ( ( F `  N )  x.  ( A  / 
( F `  N
) ) )  =  A )
6160oveq2d 5783 . . . . . . . . . 10  |-  ( (
ph  /\  N  e.  NN )  ->  ( 2  x.  ( ( F `
 N )  x.  ( A  /  ( F `  N )
) ) )  =  ( 2  x.  A
) )
6261oveq2d 5783 . . . . . . . . 9  |-  ( (
ph  /\  N  e.  NN )  ->  ( ( ( F `  N
) ^ 2 )  +  ( 2  x.  ( ( F `  N )  x.  ( A  /  ( F `  N ) ) ) ) )  =  ( ( ( F `  N ) ^ 2 )  +  ( 2  x.  A ) ) )
6362oveq1d 5782 . . . . . . . 8  |-  ( (
ph  /\  N  e.  NN )  ->  ( ( ( ( F `  N ) ^ 2 )  +  ( 2  x.  ( ( F `
 N )  x.  ( A  /  ( F `  N )
) ) ) )  +  ( ( A  /  ( F `  N ) ) ^
2 ) )  =  ( ( ( ( F `  N ) ^ 2 )  +  ( 2  x.  A
) )  +  ( ( A  /  ( F `  N )
) ^ 2 ) ) )
6458, 63eqtrd 2170 . . . . . . 7  |-  ( (
ph  /\  N  e.  NN )  ->  ( ( ( F `  N
)  +  ( A  /  ( F `  N ) ) ) ^ 2 )  =  ( ( ( ( F `  N ) ^ 2 )  +  ( 2  x.  A
) )  +  ( ( A  /  ( F `  N )
) ^ 2 ) ) )
6564oveq1d 5782 . . . . . 6  |-  ( (
ph  /\  N  e.  NN )  ->  ( ( ( ( F `  N )  +  ( A  /  ( F `
 N ) ) ) ^ 2 )  -  ( 4  x.  A ) )  =  ( ( ( ( ( F `  N
) ^ 2 )  +  ( 2  x.  A ) )  +  ( ( A  / 
( F `  N
) ) ^ 2 ) )  -  (
4  x.  A ) ) )
6637, 38addcld 7778 . . . . . . 7  |-  ( (
ph  /\  N  e.  NN )  ->  ( ( ( F `  N
) ^ 2 )  +  ( 2  x.  A ) )  e.  CC )
6756sqcld 10415 . . . . . . 7  |-  ( (
ph  /\  N  e.  NN )  ->  ( ( A  /  ( F `
 N ) ) ^ 2 )  e.  CC )
6866, 67, 33addsubd 8087 . . . . . 6  |-  ( (
ph  /\  N  e.  NN )  ->  ( ( ( ( ( F `
 N ) ^
2 )  +  ( 2  x.  A ) )  +  ( ( A  /  ( F `
 N ) ) ^ 2 ) )  -  ( 4  x.  A ) )  =  ( ( ( ( ( F `  N
) ^ 2 )  +  ( 2  x.  A ) )  -  ( 4  x.  A
) )  +  ( ( A  /  ( F `  N )
) ^ 2 ) ) )
6965, 68eqtrd 2170 . . . . 5  |-  ( (
ph  /\  N  e.  NN )  ->  ( ( ( ( F `  N )  +  ( A  /  ( F `
 N ) ) ) ^ 2 )  -  ( 4  x.  A ) )  =  ( ( ( ( ( F `  N
) ^ 2 )  +  ( 2  x.  A ) )  -  ( 4  x.  A
) )  +  ( ( A  /  ( F `  N )
) ^ 2 ) ) )
7037, 38subcld 8066 . . . . . . 7  |-  ( (
ph  /\  N  e.  NN )  ->  ( ( ( F `  N
) ^ 2 )  -  ( 2  x.  A ) )  e.  CC )
7170, 67addcld 7778 . . . . . 6  |-  ( (
ph  /\  N  e.  NN )  ->  ( ( ( ( F `  N ) ^ 2 )  -  ( 2  x.  A ) )  +  ( ( A  /  ( F `  N ) ) ^
2 ) )  e.  CC )
72 2z 9075 . . . . . . . . 9  |-  2  e.  ZZ
7372a1i 9 . . . . . . . 8  |-  ( (
ph  /\  N  e.  NN )  ->  2  e.  ZZ )
747, 73rpexpcld 10441 . . . . . . 7  |-  ( (
ph  /\  N  e.  NN )  ->  ( ( F `  N ) ^ 2 )  e.  RR+ )
7574rpap0d 9482 . . . . . 6  |-  ( (
ph  /\  N  e.  NN )  ->  ( ( F `  N ) ^ 2 ) #  0 )
7671, 37, 75divcanap4d 8549 . . . . 5  |-  ( (
ph  /\  N  e.  NN )  ->  ( ( ( ( ( ( F `  N ) ^ 2 )  -  ( 2  x.  A
) )  +  ( ( A  /  ( F `  N )
) ^ 2 ) )  x.  ( ( F `  N ) ^ 2 ) )  /  ( ( F `
 N ) ^
2 ) )  =  ( ( ( ( F `  N ) ^ 2 )  -  ( 2  x.  A
) )  +  ( ( A  /  ( F `  N )
) ^ 2 ) ) )
7755, 69, 763eqtr4d 2180 . . . 4  |-  ( (
ph  /\  N  e.  NN )  ->  ( ( ( ( F `  N )  +  ( A  /  ( F `
 N ) ) ) ^ 2 )  -  ( 4  x.  A ) )  =  ( ( ( ( ( ( F `  N ) ^ 2 )  -  ( 2  x.  A ) )  +  ( ( A  /  ( F `  N ) ) ^
2 ) )  x.  ( ( F `  N ) ^ 2 ) )  /  (
( F `  N
) ^ 2 ) ) )
7837, 38, 37subdird 8170 . . . . . . . 8  |-  ( (
ph  /\  N  e.  NN )  ->  ( ( ( ( F `  N ) ^ 2 )  -  ( 2  x.  A ) )  x.  ( ( F `
 N ) ^
2 ) )  =  ( ( ( ( F `  N ) ^ 2 )  x.  ( ( F `  N ) ^ 2 ) )  -  (
( 2  x.  A
)  x.  ( ( F `  N ) ^ 2 ) ) ) )
7937sqvald 10414 . . . . . . . . 9  |-  ( (
ph  /\  N  e.  NN )  ->  ( ( ( F `  N
) ^ 2 ) ^ 2 )  =  ( ( ( F `
 N ) ^
2 )  x.  (
( F `  N
) ^ 2 ) ) )
8013, 21, 37mul32d 7908 . . . . . . . . . 10  |-  ( (
ph  /\  N  e.  NN )  ->  ( ( 2  x.  A )  x.  ( ( F `
 N ) ^
2 ) )  =  ( ( 2  x.  ( ( F `  N ) ^ 2 ) )  x.  A
) )
8113, 37, 21mulassd 7782 . . . . . . . . . 10  |-  ( (
ph  /\  N  e.  NN )  ->  ( ( 2  x.  ( ( F `  N ) ^ 2 ) )  x.  A )  =  ( 2  x.  (
( ( F `  N ) ^ 2 )  x.  A ) ) )
8280, 81eqtr2d 2171 . . . . . . . . 9  |-  ( (
ph  /\  N  e.  NN )  ->  ( 2  x.  ( ( ( F `  N ) ^ 2 )  x.  A ) )  =  ( ( 2  x.  A )  x.  (
( F `  N
) ^ 2 ) ) )
8379, 82oveq12d 5785 . . . . . . . 8  |-  ( (
ph  /\  N  e.  NN )  ->  ( ( ( ( F `  N ) ^ 2 ) ^ 2 )  -  ( 2  x.  ( ( ( F `
 N ) ^
2 )  x.  A
) ) )  =  ( ( ( ( F `  N ) ^ 2 )  x.  ( ( F `  N ) ^ 2 ) )  -  (
( 2  x.  A
)  x.  ( ( F `  N ) ^ 2 ) ) ) )
8478, 83eqtr4d 2173 . . . . . . 7  |-  ( (
ph  /\  N  e.  NN )  ->  ( ( ( ( F `  N ) ^ 2 )  -  ( 2  x.  A ) )  x.  ( ( F `
 N ) ^
2 ) )  =  ( ( ( ( F `  N ) ^ 2 ) ^
2 )  -  (
2  x.  ( ( ( F `  N
) ^ 2 )  x.  A ) ) ) )
8521, 36, 59sqdivapd 10430 . . . . . . . . 9  |-  ( (
ph  /\  N  e.  NN )  ->  ( ( A  /  ( F `
 N ) ) ^ 2 )  =  ( ( A ^
2 )  /  (
( F `  N
) ^ 2 ) ) )
8685oveq1d 5782 . . . . . . . 8  |-  ( (
ph  /\  N  e.  NN )  ->  ( ( ( A  /  ( F `  N )
) ^ 2 )  x.  ( ( F `
 N ) ^
2 ) )  =  ( ( ( A ^ 2 )  / 
( ( F `  N ) ^ 2 ) )  x.  (
( F `  N
) ^ 2 ) ) )
8721sqcld 10415 . . . . . . . . 9  |-  ( (
ph  /\  N  e.  NN )  ->  ( A ^ 2 )  e.  CC )
8887, 37, 75divcanap1d 8544 . . . . . . . 8  |-  ( (
ph  /\  N  e.  NN )  ->  ( ( ( A ^ 2 )  /  ( ( F `  N ) ^ 2 ) )  x.  ( ( F `
 N ) ^
2 ) )  =  ( A ^ 2 ) )
8986, 88eqtrd 2170 . . . . . . 7  |-  ( (
ph  /\  N  e.  NN )  ->  ( ( ( A  /  ( F `  N )
) ^ 2 )  x.  ( ( F `
 N ) ^
2 ) )  =  ( A ^ 2 ) )
9084, 89oveq12d 5785 . . . . . 6  |-  ( (
ph  /\  N  e.  NN )  ->  ( ( ( ( ( F `
 N ) ^
2 )  -  (
2  x.  A ) )  x.  ( ( F `  N ) ^ 2 ) )  +  ( ( ( A  /  ( F `
 N ) ) ^ 2 )  x.  ( ( F `  N ) ^ 2 ) ) )  =  ( ( ( ( ( F `  N
) ^ 2 ) ^ 2 )  -  ( 2  x.  (
( ( F `  N ) ^ 2 )  x.  A ) ) )  +  ( A ^ 2 ) ) )
9170, 67, 37adddird 7784 . . . . . 6  |-  ( (
ph  /\  N  e.  NN )  ->  ( ( ( ( ( F `
 N ) ^
2 )  -  (
2  x.  A ) )  +  ( ( A  /  ( F `
 N ) ) ^ 2 ) )  x.  ( ( F `
 N ) ^
2 ) )  =  ( ( ( ( ( F `  N
) ^ 2 )  -  ( 2  x.  A ) )  x.  ( ( F `  N ) ^ 2 ) )  +  ( ( ( A  / 
( F `  N
) ) ^ 2 )  x.  ( ( F `  N ) ^ 2 ) ) ) )
92 binom2sub 10398 . . . . . . 7  |-  ( ( ( ( F `  N ) ^ 2 )  e.  CC  /\  A  e.  CC )  ->  ( ( ( ( F `  N ) ^ 2 )  -  A ) ^ 2 )  =  ( ( ( ( ( F `
 N ) ^
2 ) ^ 2 )  -  ( 2  x.  ( ( ( F `  N ) ^ 2 )  x.  A ) ) )  +  ( A ^
2 ) ) )
9337, 21, 92syl2anc 408 . . . . . 6  |-  ( (
ph  /\  N  e.  NN )  ->  ( ( ( ( F `  N ) ^ 2 )  -  A ) ^ 2 )  =  ( ( ( ( ( F `  N
) ^ 2 ) ^ 2 )  -  ( 2  x.  (
( ( F `  N ) ^ 2 )  x.  A ) ) )  +  ( A ^ 2 ) ) )
9490, 91, 933eqtr4d 2180 . . . . 5  |-  ( (
ph  /\  N  e.  NN )  ->  ( ( ( ( ( F `
 N ) ^
2 )  -  (
2  x.  A ) )  +  ( ( A  /  ( F `
 N ) ) ^ 2 ) )  x.  ( ( F `
 N ) ^
2 ) )  =  ( ( ( ( F `  N ) ^ 2 )  -  A ) ^ 2 ) )
9594oveq1d 5782 . . . 4  |-  ( (
ph  /\  N  e.  NN )  ->  ( ( ( ( ( ( F `  N ) ^ 2 )  -  ( 2  x.  A
) )  +  ( ( A  /  ( F `  N )
) ^ 2 ) )  x.  ( ( F `  N ) ^ 2 ) )  /  ( ( F `
 N ) ^
2 ) )  =  ( ( ( ( ( F `  N
) ^ 2 )  -  A ) ^
2 )  /  (
( F `  N
) ^ 2 ) ) )
9677, 95eqtrd 2170 . . 3  |-  ( (
ph  /\  N  e.  NN )  ->  ( ( ( ( F `  N )  +  ( A  /  ( F `
 N ) ) ) ^ 2 )  -  ( 4  x.  A ) )  =  ( ( ( ( ( F `  N
) ^ 2 )  -  A ) ^
2 )  /  (
( F `  N
) ^ 2 ) ) )
9796oveq1d 5782 . 2  |-  ( (
ph  /\  N  e.  NN )  ->  ( ( ( ( ( F `
 N )  +  ( A  /  ( F `  N )
) ) ^ 2 )  -  ( 4  x.  A ) )  /  4 )  =  ( ( ( ( ( ( F `  N ) ^ 2 )  -  A ) ^ 2 )  / 
( ( F `  N ) ^ 2 ) )  /  4
) )
9837, 21subcld 8066 . . . . 5  |-  ( (
ph  /\  N  e.  NN )  ->  ( ( ( F `  N
) ^ 2 )  -  A )  e.  CC )
9998sqcld 10415 . . . 4  |-  ( (
ph  /\  N  e.  NN )  ->  ( ( ( ( F `  N ) ^ 2 )  -  A ) ^ 2 )  e.  CC )
10099, 37, 23, 75, 28divdivap1d 8575 . . 3  |-  ( (
ph  /\  N  e.  NN )  ->  ( ( ( ( ( ( F `  N ) ^ 2 )  -  A ) ^ 2 )  /  ( ( F `  N ) ^ 2 ) )  /  4 )  =  ( ( ( ( ( F `  N
) ^ 2 )  -  A ) ^
2 )  /  (
( ( F `  N ) ^ 2 )  x.  4 ) ) )
10137, 23mulcomd 7780 . . . 4  |-  ( (
ph  /\  N  e.  NN )  ->  ( ( ( F `  N
) ^ 2 )  x.  4 )  =  ( 4  x.  (
( F `  N
) ^ 2 ) ) )
102101oveq2d 5783 . . 3  |-  ( (
ph  /\  N  e.  NN )  ->  ( ( ( ( ( F `
 N ) ^
2 )  -  A
) ^ 2 )  /  ( ( ( F `  N ) ^ 2 )  x.  4 ) )  =  ( ( ( ( ( F `  N
) ^ 2 )  -  A ) ^
2 )  /  (
4  x.  ( ( F `  N ) ^ 2 ) ) ) )
103100, 102eqtrd 2170 . 2  |-  ( (
ph  /\  N  e.  NN )  ->  ( ( ( ( ( ( F `  N ) ^ 2 )  -  A ) ^ 2 )  /  ( ( F `  N ) ^ 2 ) )  /  4 )  =  ( ( ( ( ( F `  N
) ^ 2 )  -  A ) ^
2 )  /  (
4  x.  ( ( F `  N ) ^ 2 ) ) ) )
10435, 97, 1033eqtrd 2174 1  |-  ( (
ph  /\  N  e.  NN )  ->  ( ( ( F `  ( N  +  1 ) ) ^ 2 )  -  A )  =  ( ( ( ( ( F `  N
) ^ 2 )  -  A ) ^
2 )  /  (
4  x.  ( ( F `  N ) ^ 2 ) ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103    = wceq 1331    e. wcel 1480   {csn 3522   class class class wbr 3924    X. cxp 4532   ` cfv 5118  (class class class)co 5767    e. cmpo 5769   CCcc 7611   RRcr 7612   0cc0 7613   1c1 7614    + caddc 7616    x. cmul 7618    < clt 7793    <_ cle 7794    - cmin 7926   -ucneg 7927   # cap 8336    / cdiv 8425   NNcn 8713   2c2 8764   4c4 8766   ZZcz 9047   RR+crp 9434    seqcseq 10211   ^cexp 10285
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 603  ax-in2 604  ax-io 698  ax-5 1423  ax-7 1424  ax-gen 1425  ax-ie1 1469  ax-ie2 1470  ax-8 1482  ax-10 1483  ax-11 1484  ax-i12 1485  ax-bndl 1486  ax-4 1487  ax-13 1491  ax-14 1492  ax-17 1506  ax-i9 1510  ax-ial 1514  ax-i5r 1515  ax-ext 2119  ax-coll 4038  ax-sep 4041  ax-nul 4049  ax-pow 4093  ax-pr 4126  ax-un 4350  ax-setind 4447  ax-iinf 4497  ax-cnex 7704  ax-resscn 7705  ax-1cn 7706  ax-1re 7707  ax-icn 7708  ax-addcl 7709  ax-addrcl 7710  ax-mulcl 7711  ax-mulrcl 7712  ax-addcom 7713  ax-mulcom 7714  ax-addass 7715  ax-mulass 7716  ax-distr 7717  ax-i2m1 7718  ax-0lt1 7719  ax-1rid 7720  ax-0id 7721  ax-rnegex 7722  ax-precex 7723  ax-cnre 7724  ax-pre-ltirr 7725  ax-pre-ltwlin 7726  ax-pre-lttrn 7727  ax-pre-apti 7728  ax-pre-ltadd 7729  ax-pre-mulgt0 7730  ax-pre-mulext 7731
This theorem depends on definitions:  df-bi 116  df-dc 820  df-3or 963  df-3an 964  df-tru 1334  df-fal 1337  df-nf 1437  df-sb 1736  df-eu 2000  df-mo 2001  df-clab 2124  df-cleq 2130  df-clel 2133  df-nfc 2268  df-ne 2307  df-nel 2402  df-ral 2419  df-rex 2420  df-reu 2421  df-rmo 2422  df-rab 2423  df-v 2683  df-sbc 2905  df-csb 2999  df-dif 3068  df-un 3070  df-in 3072  df-ss 3079  df-nul 3359  df-if 3470  df-pw 3507  df-sn 3528  df-pr 3529  df-op 3531  df-uni 3732  df-int 3767  df-iun 3810  df-br 3925  df-opab 3985  df-mpt 3986  df-tr 4022  df-id 4210  df-po 4213  df-iso 4214  df-iord 4283  df-on 4285  df-ilim 4286  df-suc 4288  df-iom 4500  df-xp 4540  df-rel 4541  df-cnv 4542  df-co 4543  df-dm 4544  df-rn 4545  df-res 4546  df-ima 4547  df-iota 5083  df-fun 5120  df-fn 5121  df-f 5122  df-f1 5123  df-fo 5124  df-f1o 5125  df-fv 5126  df-riota 5723  df-ov 5770  df-oprab 5771  df-mpo 5772  df-1st 6031  df-2nd 6032  df-recs 6195  df-frec 6281  df-pnf 7795  df-mnf 7796  df-xr 7797  df-ltxr 7798  df-le 7799  df-sub 7928  df-neg 7929  df-reap 8330  df-ap 8337  df-div 8426  df-inn 8714  df-2 8772  df-3 8773  df-4 8774  df-n0 8971  df-z 9048  df-uz 9320  df-rp 9435  df-seqfrec 10212  df-exp 10286
This theorem is referenced by:  resqrexlemcalc2  10780
  Copyright terms: Public domain W3C validator