ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  resqrexlemcalc1 Unicode version

Theorem resqrexlemcalc1 11440
Description: Lemma for resqrex 11452. Some of the calculations involved in showing that the sequence converges. (Contributed by Mario Carneiro and Jim Kingdon, 29-Jul-2021.)
Hypotheses
Ref Expression
resqrexlemex.seq  |-  F  =  seq 1 ( ( y  e.  RR+ ,  z  e.  RR+  |->  ( ( y  +  ( A  /  y ) )  /  2 ) ) ,  ( NN  X.  { ( 1  +  A ) } ) )
resqrexlemex.a  |-  ( ph  ->  A  e.  RR )
resqrexlemex.agt0  |-  ( ph  ->  0  <_  A )
Assertion
Ref Expression
resqrexlemcalc1  |-  ( (
ph  /\  N  e.  NN )  ->  ( ( ( F `  ( N  +  1 ) ) ^ 2 )  -  A )  =  ( ( ( ( ( F `  N
) ^ 2 )  -  A ) ^
2 )  /  (
4  x.  ( ( F `  N ) ^ 2 ) ) ) )
Distinct variable groups:    y, A, z    ph, y, z
Allowed substitution hints:    F( y, z)    N( y, z)

Proof of Theorem resqrexlemcalc1
StepHypRef Expression
1 resqrexlemex.seq . . . . . . . 8  |-  F  =  seq 1 ( ( y  e.  RR+ ,  z  e.  RR+  |->  ( ( y  +  ( A  /  y ) )  /  2 ) ) ,  ( NN  X.  { ( 1  +  A ) } ) )
2 resqrexlemex.a . . . . . . . 8  |-  ( ph  ->  A  e.  RR )
3 resqrexlemex.agt0 . . . . . . . 8  |-  ( ph  ->  0  <_  A )
41, 2, 3resqrexlemfp1 11435 . . . . . . 7  |-  ( (
ph  /\  N  e.  NN )  ->  ( F `
 ( N  + 
1 ) )  =  ( ( ( F `
 N )  +  ( A  /  ( F `  N )
) )  /  2
) )
54oveq1d 5982 . . . . . 6  |-  ( (
ph  /\  N  e.  NN )  ->  ( ( F `  ( N  +  1 ) ) ^ 2 )  =  ( ( ( ( F `  N )  +  ( A  / 
( F `  N
) ) )  / 
2 ) ^ 2 ) )
61, 2, 3resqrexlemf 11433 . . . . . . . . . . 11  |-  ( ph  ->  F : NN --> RR+ )
76ffvelcdmda 5738 . . . . . . . . . 10  |-  ( (
ph  /\  N  e.  NN )  ->  ( F `
 N )  e.  RR+ )
87rpred 9853 . . . . . . . . 9  |-  ( (
ph  /\  N  e.  NN )  ->  ( F `
 N )  e.  RR )
92adantr 276 . . . . . . . . . 10  |-  ( (
ph  /\  N  e.  NN )  ->  A  e.  RR )
109, 7rerpdivcld 9885 . . . . . . . . 9  |-  ( (
ph  /\  N  e.  NN )  ->  ( A  /  ( F `  N ) )  e.  RR )
118, 10readdcld 8137 . . . . . . . 8  |-  ( (
ph  /\  N  e.  NN )  ->  ( ( F `  N )  +  ( A  / 
( F `  N
) ) )  e.  RR )
1211recnd 8136 . . . . . . 7  |-  ( (
ph  /\  N  e.  NN )  ->  ( ( F `  N )  +  ( A  / 
( F `  N
) ) )  e.  CC )
13 2cnd 9144 . . . . . . 7  |-  ( (
ph  /\  N  e.  NN )  ->  2  e.  CC )
14 2ap0 9164 . . . . . . . 8  |-  2 #  0
1514a1i 9 . . . . . . 7  |-  ( (
ph  /\  N  e.  NN )  ->  2 #  0 )
1612, 13, 15sqdivapd 10868 . . . . . 6  |-  ( (
ph  /\  N  e.  NN )  ->  ( ( ( ( F `  N )  +  ( A  /  ( F `
 N ) ) )  /  2 ) ^ 2 )  =  ( ( ( ( F `  N )  +  ( A  / 
( F `  N
) ) ) ^
2 )  /  (
2 ^ 2 ) ) )
175, 16eqtrd 2240 . . . . 5  |-  ( (
ph  /\  N  e.  NN )  ->  ( ( F `  ( N  +  1 ) ) ^ 2 )  =  ( ( ( ( F `  N )  +  ( A  / 
( F `  N
) ) ) ^
2 )  /  (
2 ^ 2 ) ) )
18 sq2 10817 . . . . . 6  |-  ( 2 ^ 2 )  =  4
1918oveq2i 5978 . . . . 5  |-  ( ( ( ( F `  N )  +  ( A  /  ( F `
 N ) ) ) ^ 2 )  /  ( 2 ^ 2 ) )  =  ( ( ( ( F `  N )  +  ( A  / 
( F `  N
) ) ) ^
2 )  /  4
)
2017, 19eqtrdi 2256 . . . 4  |-  ( (
ph  /\  N  e.  NN )  ->  ( ( F `  ( N  +  1 ) ) ^ 2 )  =  ( ( ( ( F `  N )  +  ( A  / 
( F `  N
) ) ) ^
2 )  /  4
) )
219recnd 8136 . . . . . 6  |-  ( (
ph  /\  N  e.  NN )  ->  A  e.  CC )
22 4cn 9149 . . . . . . 7  |-  4  e.  CC
2322a1i 9 . . . . . 6  |-  ( (
ph  /\  N  e.  NN )  ->  4  e.  CC )
24 4re 9148 . . . . . . . 8  |-  4  e.  RR
2524a1i 9 . . . . . . 7  |-  ( (
ph  /\  N  e.  NN )  ->  4  e.  RR )
26 4pos 9168 . . . . . . . 8  |-  0  <  4
2726a1i 9 . . . . . . 7  |-  ( (
ph  /\  N  e.  NN )  ->  0  <  4 )
2825, 27gt0ap0d 8737 . . . . . 6  |-  ( (
ph  /\  N  e.  NN )  ->  4 #  0 )
2921, 23, 28divcanap3d 8903 . . . . 5  |-  ( (
ph  /\  N  e.  NN )  ->  ( ( 4  x.  A )  /  4 )  =  A )
3029eqcomd 2213 . . . 4  |-  ( (
ph  /\  N  e.  NN )  ->  A  =  ( ( 4  x.  A )  /  4
) )
3120, 30oveq12d 5985 . . 3  |-  ( (
ph  /\  N  e.  NN )  ->  ( ( ( F `  ( N  +  1 ) ) ^ 2 )  -  A )  =  ( ( ( ( ( F `  N
)  +  ( A  /  ( F `  N ) ) ) ^ 2 )  / 
4 )  -  (
( 4  x.  A
)  /  4 ) ) )
3212sqcld 10853 . . . 4  |-  ( (
ph  /\  N  e.  NN )  ->  ( ( ( F `  N
)  +  ( A  /  ( F `  N ) ) ) ^ 2 )  e.  CC )
3323, 21mulcld 8128 . . . 4  |-  ( (
ph  /\  N  e.  NN )  ->  ( 4  x.  A )  e.  CC )
3432, 33, 23, 28divsubdirapd 8938 . . 3  |-  ( (
ph  /\  N  e.  NN )  ->  ( ( ( ( ( F `
 N )  +  ( A  /  ( F `  N )
) ) ^ 2 )  -  ( 4  x.  A ) )  /  4 )  =  ( ( ( ( ( F `  N
)  +  ( A  /  ( F `  N ) ) ) ^ 2 )  / 
4 )  -  (
( 4  x.  A
)  /  4 ) ) )
3531, 34eqtr4d 2243 . 2  |-  ( (
ph  /\  N  e.  NN )  ->  ( ( ( F `  ( N  +  1 ) ) ^ 2 )  -  A )  =  ( ( ( ( ( F `  N
)  +  ( A  /  ( F `  N ) ) ) ^ 2 )  -  ( 4  x.  A
) )  /  4
) )
368recnd 8136 . . . . . . . . 9  |-  ( (
ph  /\  N  e.  NN )  ->  ( F `
 N )  e.  CC )
3736sqcld 10853 . . . . . . . 8  |-  ( (
ph  /\  N  e.  NN )  ->  ( ( F `  N ) ^ 2 )  e.  CC )
3813, 21mulcld 8128 . . . . . . . 8  |-  ( (
ph  /\  N  e.  NN )  ->  ( 2  x.  A )  e.  CC )
3937, 38, 33addsubassd 8438 . . . . . . 7  |-  ( (
ph  /\  N  e.  NN )  ->  ( ( ( ( F `  N ) ^ 2 )  +  ( 2  x.  A ) )  -  ( 4  x.  A ) )  =  ( ( ( F `
 N ) ^
2 )  +  ( ( 2  x.  A
)  -  ( 4  x.  A ) ) ) )
40 2cn 9142 . . . . . . . . . . . 12  |-  2  e.  CC
4122, 40negsubdi2i 8393 . . . . . . . . . . 11  |-  -u (
4  -  2 )  =  ( 2  -  4 )
42 2p2e4 9198 . . . . . . . . . . . . . 14  |-  ( 2  +  2 )  =  4
4342oveq1i 5977 . . . . . . . . . . . . 13  |-  ( ( 2  +  2 )  -  2 )  =  ( 4  -  2 )
4440, 40pncan3oi 8323 . . . . . . . . . . . . 13  |-  ( ( 2  +  2 )  -  2 )  =  2
4543, 44eqtr3i 2230 . . . . . . . . . . . 12  |-  ( 4  -  2 )  =  2
4645negeqi 8301 . . . . . . . . . . 11  |-  -u (
4  -  2 )  =  -u 2
4741, 46eqtr3i 2230 . . . . . . . . . 10  |-  ( 2  -  4 )  = 
-u 2
4847oveq1i 5977 . . . . . . . . 9  |-  ( ( 2  -  4 )  x.  A )  =  ( -u 2  x.  A )
4913, 23, 21subdird 8522 . . . . . . . . 9  |-  ( (
ph  /\  N  e.  NN )  ->  ( ( 2  -  4 )  x.  A )  =  ( ( 2  x.  A )  -  (
4  x.  A ) ) )
5013, 21mulneg1d 8518 . . . . . . . . 9  |-  ( (
ph  /\  N  e.  NN )  ->  ( -u
2  x.  A )  =  -u ( 2  x.  A ) )
5148, 49, 503eqtr3a 2264 . . . . . . . 8  |-  ( (
ph  /\  N  e.  NN )  ->  ( ( 2  x.  A )  -  ( 4  x.  A ) )  = 
-u ( 2  x.  A ) )
5251oveq2d 5983 . . . . . . 7  |-  ( (
ph  /\  N  e.  NN )  ->  ( ( ( F `  N
) ^ 2 )  +  ( ( 2  x.  A )  -  ( 4  x.  A
) ) )  =  ( ( ( F `
 N ) ^
2 )  +  -u ( 2  x.  A
) ) )
5337, 38negsubd 8424 . . . . . . 7  |-  ( (
ph  /\  N  e.  NN )  ->  ( ( ( F `  N
) ^ 2 )  +  -u ( 2  x.  A ) )  =  ( ( ( F `
 N ) ^
2 )  -  (
2  x.  A ) ) )
5439, 52, 533eqtrd 2244 . . . . . 6  |-  ( (
ph  /\  N  e.  NN )  ->  ( ( ( ( F `  N ) ^ 2 )  +  ( 2  x.  A ) )  -  ( 4  x.  A ) )  =  ( ( ( F `
 N ) ^
2 )  -  (
2  x.  A ) ) )
5554oveq1d 5982 . . . . 5  |-  ( (
ph  /\  N  e.  NN )  ->  ( ( ( ( ( F `
 N ) ^
2 )  +  ( 2  x.  A ) )  -  ( 4  x.  A ) )  +  ( ( A  /  ( F `  N ) ) ^
2 ) )  =  ( ( ( ( F `  N ) ^ 2 )  -  ( 2  x.  A
) )  +  ( ( A  /  ( F `  N )
) ^ 2 ) ) )
5610recnd 8136 . . . . . . . . 9  |-  ( (
ph  /\  N  e.  NN )  ->  ( A  /  ( F `  N ) )  e.  CC )
57 binom2 10833 . . . . . . . . 9  |-  ( ( ( F `  N
)  e.  CC  /\  ( A  /  ( F `  N )
)  e.  CC )  ->  ( ( ( F `  N )  +  ( A  / 
( F `  N
) ) ) ^
2 )  =  ( ( ( ( F `
 N ) ^
2 )  +  ( 2  x.  ( ( F `  N )  x.  ( A  / 
( F `  N
) ) ) ) )  +  ( ( A  /  ( F `
 N ) ) ^ 2 ) ) )
5836, 56, 57syl2anc 411 . . . . . . . 8  |-  ( (
ph  /\  N  e.  NN )  ->  ( ( ( F `  N
)  +  ( A  /  ( F `  N ) ) ) ^ 2 )  =  ( ( ( ( F `  N ) ^ 2 )  +  ( 2  x.  (
( F `  N
)  x.  ( A  /  ( F `  N ) ) ) ) )  +  ( ( A  /  ( F `  N )
) ^ 2 ) ) )
597rpap0d 9859 . . . . . . . . . . . 12  |-  ( (
ph  /\  N  e.  NN )  ->  ( F `
 N ) #  0 )
6021, 36, 59divcanap2d 8900 . . . . . . . . . . 11  |-  ( (
ph  /\  N  e.  NN )  ->  ( ( F `  N )  x.  ( A  / 
( F `  N
) ) )  =  A )
6160oveq2d 5983 . . . . . . . . . 10  |-  ( (
ph  /\  N  e.  NN )  ->  ( 2  x.  ( ( F `
 N )  x.  ( A  /  ( F `  N )
) ) )  =  ( 2  x.  A
) )
6261oveq2d 5983 . . . . . . . . 9  |-  ( (
ph  /\  N  e.  NN )  ->  ( ( ( F `  N
) ^ 2 )  +  ( 2  x.  ( ( F `  N )  x.  ( A  /  ( F `  N ) ) ) ) )  =  ( ( ( F `  N ) ^ 2 )  +  ( 2  x.  A ) ) )
6362oveq1d 5982 . . . . . . . 8  |-  ( (
ph  /\  N  e.  NN )  ->  ( ( ( ( F `  N ) ^ 2 )  +  ( 2  x.  ( ( F `
 N )  x.  ( A  /  ( F `  N )
) ) ) )  +  ( ( A  /  ( F `  N ) ) ^
2 ) )  =  ( ( ( ( F `  N ) ^ 2 )  +  ( 2  x.  A
) )  +  ( ( A  /  ( F `  N )
) ^ 2 ) ) )
6458, 63eqtrd 2240 . . . . . . 7  |-  ( (
ph  /\  N  e.  NN )  ->  ( ( ( F `  N
)  +  ( A  /  ( F `  N ) ) ) ^ 2 )  =  ( ( ( ( F `  N ) ^ 2 )  +  ( 2  x.  A
) )  +  ( ( A  /  ( F `  N )
) ^ 2 ) ) )
6564oveq1d 5982 . . . . . 6  |-  ( (
ph  /\  N  e.  NN )  ->  ( ( ( ( F `  N )  +  ( A  /  ( F `
 N ) ) ) ^ 2 )  -  ( 4  x.  A ) )  =  ( ( ( ( ( F `  N
) ^ 2 )  +  ( 2  x.  A ) )  +  ( ( A  / 
( F `  N
) ) ^ 2 ) )  -  (
4  x.  A ) ) )
6637, 38addcld 8127 . . . . . . 7  |-  ( (
ph  /\  N  e.  NN )  ->  ( ( ( F `  N
) ^ 2 )  +  ( 2  x.  A ) )  e.  CC )
6756sqcld 10853 . . . . . . 7  |-  ( (
ph  /\  N  e.  NN )  ->  ( ( A  /  ( F `
 N ) ) ^ 2 )  e.  CC )
6866, 67, 33addsubd 8439 . . . . . 6  |-  ( (
ph  /\  N  e.  NN )  ->  ( ( ( ( ( F `
 N ) ^
2 )  +  ( 2  x.  A ) )  +  ( ( A  /  ( F `
 N ) ) ^ 2 ) )  -  ( 4  x.  A ) )  =  ( ( ( ( ( F `  N
) ^ 2 )  +  ( 2  x.  A ) )  -  ( 4  x.  A
) )  +  ( ( A  /  ( F `  N )
) ^ 2 ) ) )
6965, 68eqtrd 2240 . . . . 5  |-  ( (
ph  /\  N  e.  NN )  ->  ( ( ( ( F `  N )  +  ( A  /  ( F `
 N ) ) ) ^ 2 )  -  ( 4  x.  A ) )  =  ( ( ( ( ( F `  N
) ^ 2 )  +  ( 2  x.  A ) )  -  ( 4  x.  A
) )  +  ( ( A  /  ( F `  N )
) ^ 2 ) ) )
7037, 38subcld 8418 . . . . . . 7  |-  ( (
ph  /\  N  e.  NN )  ->  ( ( ( F `  N
) ^ 2 )  -  ( 2  x.  A ) )  e.  CC )
7170, 67addcld 8127 . . . . . 6  |-  ( (
ph  /\  N  e.  NN )  ->  ( ( ( ( F `  N ) ^ 2 )  -  ( 2  x.  A ) )  +  ( ( A  /  ( F `  N ) ) ^
2 ) )  e.  CC )
72 2z 9435 . . . . . . . . 9  |-  2  e.  ZZ
7372a1i 9 . . . . . . . 8  |-  ( (
ph  /\  N  e.  NN )  ->  2  e.  ZZ )
747, 73rpexpcld 10879 . . . . . . 7  |-  ( (
ph  /\  N  e.  NN )  ->  ( ( F `  N ) ^ 2 )  e.  RR+ )
7574rpap0d 9859 . . . . . 6  |-  ( (
ph  /\  N  e.  NN )  ->  ( ( F `  N ) ^ 2 ) #  0 )
7671, 37, 75divcanap4d 8904 . . . . 5  |-  ( (
ph  /\  N  e.  NN )  ->  ( ( ( ( ( ( F `  N ) ^ 2 )  -  ( 2  x.  A
) )  +  ( ( A  /  ( F `  N )
) ^ 2 ) )  x.  ( ( F `  N ) ^ 2 ) )  /  ( ( F `
 N ) ^
2 ) )  =  ( ( ( ( F `  N ) ^ 2 )  -  ( 2  x.  A
) )  +  ( ( A  /  ( F `  N )
) ^ 2 ) ) )
7755, 69, 763eqtr4d 2250 . . . 4  |-  ( (
ph  /\  N  e.  NN )  ->  ( ( ( ( F `  N )  +  ( A  /  ( F `
 N ) ) ) ^ 2 )  -  ( 4  x.  A ) )  =  ( ( ( ( ( ( F `  N ) ^ 2 )  -  ( 2  x.  A ) )  +  ( ( A  /  ( F `  N ) ) ^
2 ) )  x.  ( ( F `  N ) ^ 2 ) )  /  (
( F `  N
) ^ 2 ) ) )
7837, 38, 37subdird 8522 . . . . . . . 8  |-  ( (
ph  /\  N  e.  NN )  ->  ( ( ( ( F `  N ) ^ 2 )  -  ( 2  x.  A ) )  x.  ( ( F `
 N ) ^
2 ) )  =  ( ( ( ( F `  N ) ^ 2 )  x.  ( ( F `  N ) ^ 2 ) )  -  (
( 2  x.  A
)  x.  ( ( F `  N ) ^ 2 ) ) ) )
7937sqvald 10852 . . . . . . . . 9  |-  ( (
ph  /\  N  e.  NN )  ->  ( ( ( F `  N
) ^ 2 ) ^ 2 )  =  ( ( ( F `
 N ) ^
2 )  x.  (
( F `  N
) ^ 2 ) ) )
8013, 21, 37mul32d 8260 . . . . . . . . . 10  |-  ( (
ph  /\  N  e.  NN )  ->  ( ( 2  x.  A )  x.  ( ( F `
 N ) ^
2 ) )  =  ( ( 2  x.  ( ( F `  N ) ^ 2 ) )  x.  A
) )
8113, 37, 21mulassd 8131 . . . . . . . . . 10  |-  ( (
ph  /\  N  e.  NN )  ->  ( ( 2  x.  ( ( F `  N ) ^ 2 ) )  x.  A )  =  ( 2  x.  (
( ( F `  N ) ^ 2 )  x.  A ) ) )
8280, 81eqtr2d 2241 . . . . . . . . 9  |-  ( (
ph  /\  N  e.  NN )  ->  ( 2  x.  ( ( ( F `  N ) ^ 2 )  x.  A ) )  =  ( ( 2  x.  A )  x.  (
( F `  N
) ^ 2 ) ) )
8379, 82oveq12d 5985 . . . . . . . 8  |-  ( (
ph  /\  N  e.  NN )  ->  ( ( ( ( F `  N ) ^ 2 ) ^ 2 )  -  ( 2  x.  ( ( ( F `
 N ) ^
2 )  x.  A
) ) )  =  ( ( ( ( F `  N ) ^ 2 )  x.  ( ( F `  N ) ^ 2 ) )  -  (
( 2  x.  A
)  x.  ( ( F `  N ) ^ 2 ) ) ) )
8478, 83eqtr4d 2243 . . . . . . 7  |-  ( (
ph  /\  N  e.  NN )  ->  ( ( ( ( F `  N ) ^ 2 )  -  ( 2  x.  A ) )  x.  ( ( F `
 N ) ^
2 ) )  =  ( ( ( ( F `  N ) ^ 2 ) ^
2 )  -  (
2  x.  ( ( ( F `  N
) ^ 2 )  x.  A ) ) ) )
8521, 36, 59sqdivapd 10868 . . . . . . . . 9  |-  ( (
ph  /\  N  e.  NN )  ->  ( ( A  /  ( F `
 N ) ) ^ 2 )  =  ( ( A ^
2 )  /  (
( F `  N
) ^ 2 ) ) )
8685oveq1d 5982 . . . . . . . 8  |-  ( (
ph  /\  N  e.  NN )  ->  ( ( ( A  /  ( F `  N )
) ^ 2 )  x.  ( ( F `
 N ) ^
2 ) )  =  ( ( ( A ^ 2 )  / 
( ( F `  N ) ^ 2 ) )  x.  (
( F `  N
) ^ 2 ) ) )
8721sqcld 10853 . . . . . . . . 9  |-  ( (
ph  /\  N  e.  NN )  ->  ( A ^ 2 )  e.  CC )
8887, 37, 75divcanap1d 8899 . . . . . . . 8  |-  ( (
ph  /\  N  e.  NN )  ->  ( ( ( A ^ 2 )  /  ( ( F `  N ) ^ 2 ) )  x.  ( ( F `
 N ) ^
2 ) )  =  ( A ^ 2 ) )
8986, 88eqtrd 2240 . . . . . . 7  |-  ( (
ph  /\  N  e.  NN )  ->  ( ( ( A  /  ( F `  N )
) ^ 2 )  x.  ( ( F `
 N ) ^
2 ) )  =  ( A ^ 2 ) )
9084, 89oveq12d 5985 . . . . . 6  |-  ( (
ph  /\  N  e.  NN )  ->  ( ( ( ( ( F `
 N ) ^
2 )  -  (
2  x.  A ) )  x.  ( ( F `  N ) ^ 2 ) )  +  ( ( ( A  /  ( F `
 N ) ) ^ 2 )  x.  ( ( F `  N ) ^ 2 ) ) )  =  ( ( ( ( ( F `  N
) ^ 2 ) ^ 2 )  -  ( 2  x.  (
( ( F `  N ) ^ 2 )  x.  A ) ) )  +  ( A ^ 2 ) ) )
9170, 67, 37adddird 8133 . . . . . 6  |-  ( (
ph  /\  N  e.  NN )  ->  ( ( ( ( ( F `
 N ) ^
2 )  -  (
2  x.  A ) )  +  ( ( A  /  ( F `
 N ) ) ^ 2 ) )  x.  ( ( F `
 N ) ^
2 ) )  =  ( ( ( ( ( F `  N
) ^ 2 )  -  ( 2  x.  A ) )  x.  ( ( F `  N ) ^ 2 ) )  +  ( ( ( A  / 
( F `  N
) ) ^ 2 )  x.  ( ( F `  N ) ^ 2 ) ) ) )
92 binom2sub 10835 . . . . . . 7  |-  ( ( ( ( F `  N ) ^ 2 )  e.  CC  /\  A  e.  CC )  ->  ( ( ( ( F `  N ) ^ 2 )  -  A ) ^ 2 )  =  ( ( ( ( ( F `
 N ) ^
2 ) ^ 2 )  -  ( 2  x.  ( ( ( F `  N ) ^ 2 )  x.  A ) ) )  +  ( A ^
2 ) ) )
9337, 21, 92syl2anc 411 . . . . . 6  |-  ( (
ph  /\  N  e.  NN )  ->  ( ( ( ( F `  N ) ^ 2 )  -  A ) ^ 2 )  =  ( ( ( ( ( F `  N
) ^ 2 ) ^ 2 )  -  ( 2  x.  (
( ( F `  N ) ^ 2 )  x.  A ) ) )  +  ( A ^ 2 ) ) )
9490, 91, 933eqtr4d 2250 . . . . 5  |-  ( (
ph  /\  N  e.  NN )  ->  ( ( ( ( ( F `
 N ) ^
2 )  -  (
2  x.  A ) )  +  ( ( A  /  ( F `
 N ) ) ^ 2 ) )  x.  ( ( F `
 N ) ^
2 ) )  =  ( ( ( ( F `  N ) ^ 2 )  -  A ) ^ 2 ) )
9594oveq1d 5982 . . . 4  |-  ( (
ph  /\  N  e.  NN )  ->  ( ( ( ( ( ( F `  N ) ^ 2 )  -  ( 2  x.  A
) )  +  ( ( A  /  ( F `  N )
) ^ 2 ) )  x.  ( ( F `  N ) ^ 2 ) )  /  ( ( F `
 N ) ^
2 ) )  =  ( ( ( ( ( F `  N
) ^ 2 )  -  A ) ^
2 )  /  (
( F `  N
) ^ 2 ) ) )
9677, 95eqtrd 2240 . . 3  |-  ( (
ph  /\  N  e.  NN )  ->  ( ( ( ( F `  N )  +  ( A  /  ( F `
 N ) ) ) ^ 2 )  -  ( 4  x.  A ) )  =  ( ( ( ( ( F `  N
) ^ 2 )  -  A ) ^
2 )  /  (
( F `  N
) ^ 2 ) ) )
9796oveq1d 5982 . 2  |-  ( (
ph  /\  N  e.  NN )  ->  ( ( ( ( ( F `
 N )  +  ( A  /  ( F `  N )
) ) ^ 2 )  -  ( 4  x.  A ) )  /  4 )  =  ( ( ( ( ( ( F `  N ) ^ 2 )  -  A ) ^ 2 )  / 
( ( F `  N ) ^ 2 ) )  /  4
) )
9837, 21subcld 8418 . . . . 5  |-  ( (
ph  /\  N  e.  NN )  ->  ( ( ( F `  N
) ^ 2 )  -  A )  e.  CC )
9998sqcld 10853 . . . 4  |-  ( (
ph  /\  N  e.  NN )  ->  ( ( ( ( F `  N ) ^ 2 )  -  A ) ^ 2 )  e.  CC )
10099, 37, 23, 75, 28divdivap1d 8930 . . 3  |-  ( (
ph  /\  N  e.  NN )  ->  ( ( ( ( ( ( F `  N ) ^ 2 )  -  A ) ^ 2 )  /  ( ( F `  N ) ^ 2 ) )  /  4 )  =  ( ( ( ( ( F `  N
) ^ 2 )  -  A ) ^
2 )  /  (
( ( F `  N ) ^ 2 )  x.  4 ) ) )
10137, 23mulcomd 8129 . . . 4  |-  ( (
ph  /\  N  e.  NN )  ->  ( ( ( F `  N
) ^ 2 )  x.  4 )  =  ( 4  x.  (
( F `  N
) ^ 2 ) ) )
102101oveq2d 5983 . . 3  |-  ( (
ph  /\  N  e.  NN )  ->  ( ( ( ( ( F `
 N ) ^
2 )  -  A
) ^ 2 )  /  ( ( ( F `  N ) ^ 2 )  x.  4 ) )  =  ( ( ( ( ( F `  N
) ^ 2 )  -  A ) ^
2 )  /  (
4  x.  ( ( F `  N ) ^ 2 ) ) ) )
103100, 102eqtrd 2240 . 2  |-  ( (
ph  /\  N  e.  NN )  ->  ( ( ( ( ( ( F `  N ) ^ 2 )  -  A ) ^ 2 )  /  ( ( F `  N ) ^ 2 ) )  /  4 )  =  ( ( ( ( ( F `  N
) ^ 2 )  -  A ) ^
2 )  /  (
4  x.  ( ( F `  N ) ^ 2 ) ) ) )
10435, 97, 1033eqtrd 2244 1  |-  ( (
ph  /\  N  e.  NN )  ->  ( ( ( F `  ( N  +  1 ) ) ^ 2 )  -  A )  =  ( ( ( ( ( F `  N
) ^ 2 )  -  A ) ^
2 )  /  (
4  x.  ( ( F `  N ) ^ 2 ) ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    = wceq 1373    e. wcel 2178   {csn 3643   class class class wbr 4059    X. cxp 4691   ` cfv 5290  (class class class)co 5967    e. cmpo 5969   CCcc 7958   RRcr 7959   0cc0 7960   1c1 7961    + caddc 7963    x. cmul 7965    < clt 8142    <_ cle 8143    - cmin 8278   -ucneg 8279   # cap 8689    / cdiv 8780   NNcn 9071   2c2 9122   4c4 9124   ZZcz 9407   RR+crp 9810    seqcseq 10629   ^cexp 10720
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-13 2180  ax-14 2181  ax-ext 2189  ax-coll 4175  ax-sep 4178  ax-nul 4186  ax-pow 4234  ax-pr 4269  ax-un 4498  ax-setind 4603  ax-iinf 4654  ax-cnex 8051  ax-resscn 8052  ax-1cn 8053  ax-1re 8054  ax-icn 8055  ax-addcl 8056  ax-addrcl 8057  ax-mulcl 8058  ax-mulrcl 8059  ax-addcom 8060  ax-mulcom 8061  ax-addass 8062  ax-mulass 8063  ax-distr 8064  ax-i2m1 8065  ax-0lt1 8066  ax-1rid 8067  ax-0id 8068  ax-rnegex 8069  ax-precex 8070  ax-cnre 8071  ax-pre-ltirr 8072  ax-pre-ltwlin 8073  ax-pre-lttrn 8074  ax-pre-apti 8075  ax-pre-ltadd 8076  ax-pre-mulgt0 8077  ax-pre-mulext 8078
This theorem depends on definitions:  df-bi 117  df-dc 837  df-3or 982  df-3an 983  df-tru 1376  df-fal 1379  df-nf 1485  df-sb 1787  df-eu 2058  df-mo 2059  df-clab 2194  df-cleq 2200  df-clel 2203  df-nfc 2339  df-ne 2379  df-nel 2474  df-ral 2491  df-rex 2492  df-reu 2493  df-rmo 2494  df-rab 2495  df-v 2778  df-sbc 3006  df-csb 3102  df-dif 3176  df-un 3178  df-in 3180  df-ss 3187  df-nul 3469  df-if 3580  df-pw 3628  df-sn 3649  df-pr 3650  df-op 3652  df-uni 3865  df-int 3900  df-iun 3943  df-br 4060  df-opab 4122  df-mpt 4123  df-tr 4159  df-id 4358  df-po 4361  df-iso 4362  df-iord 4431  df-on 4433  df-ilim 4434  df-suc 4436  df-iom 4657  df-xp 4699  df-rel 4700  df-cnv 4701  df-co 4702  df-dm 4703  df-rn 4704  df-res 4705  df-ima 4706  df-iota 5251  df-fun 5292  df-fn 5293  df-f 5294  df-f1 5295  df-fo 5296  df-f1o 5297  df-fv 5298  df-riota 5922  df-ov 5970  df-oprab 5971  df-mpo 5972  df-1st 6249  df-2nd 6250  df-recs 6414  df-frec 6500  df-pnf 8144  df-mnf 8145  df-xr 8146  df-ltxr 8147  df-le 8148  df-sub 8280  df-neg 8281  df-reap 8683  df-ap 8690  df-div 8781  df-inn 9072  df-2 9130  df-3 9131  df-4 9132  df-n0 9331  df-z 9408  df-uz 9684  df-rp 9811  df-seqfrec 10630  df-exp 10721
This theorem is referenced by:  resqrexlemcalc2  11441
  Copyright terms: Public domain W3C validator