| Intuitionistic Logic Explorer | 
      
      
      < Previous  
      Next >
      
       Nearby theorems  | 
  ||
| Mirrors > Home > ILE Home > Th. List > resqrexlemcalc1 | Unicode version | ||
| Description: Lemma for resqrex 11191. Some of the calculations involved in showing that the sequence converges. (Contributed by Mario Carneiro and Jim Kingdon, 29-Jul-2021.) | 
| Ref | Expression | 
|---|---|
| resqrexlemex.seq | 
 | 
| resqrexlemex.a | 
 | 
| resqrexlemex.agt0 | 
 | 
| Ref | Expression | 
|---|---|
| resqrexlemcalc1 | 
 | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | resqrexlemex.seq | 
. . . . . . . 8
 | |
| 2 | resqrexlemex.a | 
. . . . . . . 8
 | |
| 3 | resqrexlemex.agt0 | 
. . . . . . . 8
 | |
| 4 | 1, 2, 3 | resqrexlemfp1 11174 | 
. . . . . . 7
 | 
| 5 | 4 | oveq1d 5937 | 
. . . . . 6
 | 
| 6 | 1, 2, 3 | resqrexlemf 11172 | 
. . . . . . . . . . 11
 | 
| 7 | 6 | ffvelcdmda 5697 | 
. . . . . . . . . 10
 | 
| 8 | 7 | rpred 9771 | 
. . . . . . . . 9
 | 
| 9 | 2 | adantr 276 | 
. . . . . . . . . 10
 | 
| 10 | 9, 7 | rerpdivcld 9803 | 
. . . . . . . . 9
 | 
| 11 | 8, 10 | readdcld 8056 | 
. . . . . . . 8
 | 
| 12 | 11 | recnd 8055 | 
. . . . . . 7
 | 
| 13 | 2cnd 9063 | 
. . . . . . 7
 | |
| 14 | 2ap0 9083 | 
. . . . . . . 8
 | |
| 15 | 14 | a1i 9 | 
. . . . . . 7
 | 
| 16 | 12, 13, 15 | sqdivapd 10778 | 
. . . . . 6
 | 
| 17 | 5, 16 | eqtrd 2229 | 
. . . . 5
 | 
| 18 | sq2 10727 | 
. . . . . 6
 | |
| 19 | 18 | oveq2i 5933 | 
. . . . 5
 | 
| 20 | 17, 19 | eqtrdi 2245 | 
. . . 4
 | 
| 21 | 9 | recnd 8055 | 
. . . . . 6
 | 
| 22 | 4cn 9068 | 
. . . . . . 7
 | |
| 23 | 22 | a1i 9 | 
. . . . . 6
 | 
| 24 | 4re 9067 | 
. . . . . . . 8
 | |
| 25 | 24 | a1i 9 | 
. . . . . . 7
 | 
| 26 | 4pos 9087 | 
. . . . . . . 8
 | |
| 27 | 26 | a1i 9 | 
. . . . . . 7
 | 
| 28 | 25, 27 | gt0ap0d 8656 | 
. . . . . 6
 | 
| 29 | 21, 23, 28 | divcanap3d 8822 | 
. . . . 5
 | 
| 30 | 29 | eqcomd 2202 | 
. . . 4
 | 
| 31 | 20, 30 | oveq12d 5940 | 
. . 3
 | 
| 32 | 12 | sqcld 10763 | 
. . . 4
 | 
| 33 | 23, 21 | mulcld 8047 | 
. . . 4
 | 
| 34 | 32, 33, 23, 28 | divsubdirapd 8857 | 
. . 3
 | 
| 35 | 31, 34 | eqtr4d 2232 | 
. 2
 | 
| 36 | 8 | recnd 8055 | 
. . . . . . . . 9
 | 
| 37 | 36 | sqcld 10763 | 
. . . . . . . 8
 | 
| 38 | 13, 21 | mulcld 8047 | 
. . . . . . . 8
 | 
| 39 | 37, 38, 33 | addsubassd 8357 | 
. . . . . . 7
 | 
| 40 | 2cn 9061 | 
. . . . . . . . . . . 12
 | |
| 41 | 22, 40 | negsubdi2i 8312 | 
. . . . . . . . . . 11
 | 
| 42 | 2p2e4 9117 | 
. . . . . . . . . . . . . 14
 | |
| 43 | 42 | oveq1i 5932 | 
. . . . . . . . . . . . 13
 | 
| 44 | 40, 40 | pncan3oi 8242 | 
. . . . . . . . . . . . 13
 | 
| 45 | 43, 44 | eqtr3i 2219 | 
. . . . . . . . . . . 12
 | 
| 46 | 45 | negeqi 8220 | 
. . . . . . . . . . 11
 | 
| 47 | 41, 46 | eqtr3i 2219 | 
. . . . . . . . . 10
 | 
| 48 | 47 | oveq1i 5932 | 
. . . . . . . . 9
 | 
| 49 | 13, 23, 21 | subdird 8441 | 
. . . . . . . . 9
 | 
| 50 | 13, 21 | mulneg1d 8437 | 
. . . . . . . . 9
 | 
| 51 | 48, 49, 50 | 3eqtr3a 2253 | 
. . . . . . . 8
 | 
| 52 | 51 | oveq2d 5938 | 
. . . . . . 7
 | 
| 53 | 37, 38 | negsubd 8343 | 
. . . . . . 7
 | 
| 54 | 39, 52, 53 | 3eqtrd 2233 | 
. . . . . 6
 | 
| 55 | 54 | oveq1d 5937 | 
. . . . 5
 | 
| 56 | 10 | recnd 8055 | 
. . . . . . . . 9
 | 
| 57 | binom2 10743 | 
. . . . . . . . 9
 | |
| 58 | 36, 56, 57 | syl2anc 411 | 
. . . . . . . 8
 | 
| 59 | 7 | rpap0d 9777 | 
. . . . . . . . . . . 12
 | 
| 60 | 21, 36, 59 | divcanap2d 8819 | 
. . . . . . . . . . 11
 | 
| 61 | 60 | oveq2d 5938 | 
. . . . . . . . . 10
 | 
| 62 | 61 | oveq2d 5938 | 
. . . . . . . . 9
 | 
| 63 | 62 | oveq1d 5937 | 
. . . . . . . 8
 | 
| 64 | 58, 63 | eqtrd 2229 | 
. . . . . . 7
 | 
| 65 | 64 | oveq1d 5937 | 
. . . . . 6
 | 
| 66 | 37, 38 | addcld 8046 | 
. . . . . . 7
 | 
| 67 | 56 | sqcld 10763 | 
. . . . . . 7
 | 
| 68 | 66, 67, 33 | addsubd 8358 | 
. . . . . 6
 | 
| 69 | 65, 68 | eqtrd 2229 | 
. . . . 5
 | 
| 70 | 37, 38 | subcld 8337 | 
. . . . . . 7
 | 
| 71 | 70, 67 | addcld 8046 | 
. . . . . 6
 | 
| 72 | 2z 9354 | 
. . . . . . . . 9
 | |
| 73 | 72 | a1i 9 | 
. . . . . . . 8
 | 
| 74 | 7, 73 | rpexpcld 10789 | 
. . . . . . 7
 | 
| 75 | 74 | rpap0d 9777 | 
. . . . . 6
 | 
| 76 | 71, 37, 75 | divcanap4d 8823 | 
. . . . 5
 | 
| 77 | 55, 69, 76 | 3eqtr4d 2239 | 
. . . 4
 | 
| 78 | 37, 38, 37 | subdird 8441 | 
. . . . . . . 8
 | 
| 79 | 37 | sqvald 10762 | 
. . . . . . . . 9
 | 
| 80 | 13, 21, 37 | mul32d 8179 | 
. . . . . . . . . 10
 | 
| 81 | 13, 37, 21 | mulassd 8050 | 
. . . . . . . . . 10
 | 
| 82 | 80, 81 | eqtr2d 2230 | 
. . . . . . . . 9
 | 
| 83 | 79, 82 | oveq12d 5940 | 
. . . . . . . 8
 | 
| 84 | 78, 83 | eqtr4d 2232 | 
. . . . . . 7
 | 
| 85 | 21, 36, 59 | sqdivapd 10778 | 
. . . . . . . . 9
 | 
| 86 | 85 | oveq1d 5937 | 
. . . . . . . 8
 | 
| 87 | 21 | sqcld 10763 | 
. . . . . . . . 9
 | 
| 88 | 87, 37, 75 | divcanap1d 8818 | 
. . . . . . . 8
 | 
| 89 | 86, 88 | eqtrd 2229 | 
. . . . . . 7
 | 
| 90 | 84, 89 | oveq12d 5940 | 
. . . . . 6
 | 
| 91 | 70, 67, 37 | adddird 8052 | 
. . . . . 6
 | 
| 92 | binom2sub 10745 | 
. . . . . . 7
 | |
| 93 | 37, 21, 92 | syl2anc 411 | 
. . . . . 6
 | 
| 94 | 90, 91, 93 | 3eqtr4d 2239 | 
. . . . 5
 | 
| 95 | 94 | oveq1d 5937 | 
. . . 4
 | 
| 96 | 77, 95 | eqtrd 2229 | 
. . 3
 | 
| 97 | 96 | oveq1d 5937 | 
. 2
 | 
| 98 | 37, 21 | subcld 8337 | 
. . . . 5
 | 
| 99 | 98 | sqcld 10763 | 
. . . 4
 | 
| 100 | 99, 37, 23, 75, 28 | divdivap1d 8849 | 
. . 3
 | 
| 101 | 37, 23 | mulcomd 8048 | 
. . . 4
 | 
| 102 | 101 | oveq2d 5938 | 
. . 3
 | 
| 103 | 100, 102 | eqtrd 2229 | 
. 2
 | 
| 104 | 35, 97, 103 | 3eqtrd 2233 | 
1
 | 
| Colors of variables: wff set class | 
| Syntax hints:     | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-13 2169 ax-14 2170 ax-ext 2178 ax-coll 4148 ax-sep 4151 ax-nul 4159 ax-pow 4207 ax-pr 4242 ax-un 4468 ax-setind 4573 ax-iinf 4624 ax-cnex 7970 ax-resscn 7971 ax-1cn 7972 ax-1re 7973 ax-icn 7974 ax-addcl 7975 ax-addrcl 7976 ax-mulcl 7977 ax-mulrcl 7978 ax-addcom 7979 ax-mulcom 7980 ax-addass 7981 ax-mulass 7982 ax-distr 7983 ax-i2m1 7984 ax-0lt1 7985 ax-1rid 7986 ax-0id 7987 ax-rnegex 7988 ax-precex 7989 ax-cnre 7990 ax-pre-ltirr 7991 ax-pre-ltwlin 7992 ax-pre-lttrn 7993 ax-pre-apti 7994 ax-pre-ltadd 7995 ax-pre-mulgt0 7996 ax-pre-mulext 7997 | 
| This theorem depends on definitions: df-bi 117 df-dc 836 df-3or 981 df-3an 982 df-tru 1367 df-fal 1370 df-nf 1475 df-sb 1777 df-eu 2048 df-mo 2049 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-ne 2368 df-nel 2463 df-ral 2480 df-rex 2481 df-reu 2482 df-rmo 2483 df-rab 2484 df-v 2765 df-sbc 2990 df-csb 3085 df-dif 3159 df-un 3161 df-in 3163 df-ss 3170 df-nul 3451 df-if 3562 df-pw 3607 df-sn 3628 df-pr 3629 df-op 3631 df-uni 3840 df-int 3875 df-iun 3918 df-br 4034 df-opab 4095 df-mpt 4096 df-tr 4132 df-id 4328 df-po 4331 df-iso 4332 df-iord 4401 df-on 4403 df-ilim 4404 df-suc 4406 df-iom 4627 df-xp 4669 df-rel 4670 df-cnv 4671 df-co 4672 df-dm 4673 df-rn 4674 df-res 4675 df-ima 4676 df-iota 5219 df-fun 5260 df-fn 5261 df-f 5262 df-f1 5263 df-fo 5264 df-f1o 5265 df-fv 5266 df-riota 5877 df-ov 5925 df-oprab 5926 df-mpo 5927 df-1st 6198 df-2nd 6199 df-recs 6363 df-frec 6449 df-pnf 8063 df-mnf 8064 df-xr 8065 df-ltxr 8066 df-le 8067 df-sub 8199 df-neg 8200 df-reap 8602 df-ap 8609 df-div 8700 df-inn 8991 df-2 9049 df-3 9050 df-4 9051 df-n0 9250 df-z 9327 df-uz 9602 df-rp 9729 df-seqfrec 10540 df-exp 10631 | 
| This theorem is referenced by: resqrexlemcalc2 11180 | 
| Copyright terms: Public domain | W3C validator |