| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > resqrexlemcalc1 | Unicode version | ||
| Description: Lemma for resqrex 11452. Some of the calculations involved in showing that the sequence converges. (Contributed by Mario Carneiro and Jim Kingdon, 29-Jul-2021.) |
| Ref | Expression |
|---|---|
| resqrexlemex.seq |
|
| resqrexlemex.a |
|
| resqrexlemex.agt0 |
|
| Ref | Expression |
|---|---|
| resqrexlemcalc1 |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | resqrexlemex.seq |
. . . . . . . 8
| |
| 2 | resqrexlemex.a |
. . . . . . . 8
| |
| 3 | resqrexlemex.agt0 |
. . . . . . . 8
| |
| 4 | 1, 2, 3 | resqrexlemfp1 11435 |
. . . . . . 7
|
| 5 | 4 | oveq1d 5982 |
. . . . . 6
|
| 6 | 1, 2, 3 | resqrexlemf 11433 |
. . . . . . . . . . 11
|
| 7 | 6 | ffvelcdmda 5738 |
. . . . . . . . . 10
|
| 8 | 7 | rpred 9853 |
. . . . . . . . 9
|
| 9 | 2 | adantr 276 |
. . . . . . . . . 10
|
| 10 | 9, 7 | rerpdivcld 9885 |
. . . . . . . . 9
|
| 11 | 8, 10 | readdcld 8137 |
. . . . . . . 8
|
| 12 | 11 | recnd 8136 |
. . . . . . 7
|
| 13 | 2cnd 9144 |
. . . . . . 7
| |
| 14 | 2ap0 9164 |
. . . . . . . 8
| |
| 15 | 14 | a1i 9 |
. . . . . . 7
|
| 16 | 12, 13, 15 | sqdivapd 10868 |
. . . . . 6
|
| 17 | 5, 16 | eqtrd 2240 |
. . . . 5
|
| 18 | sq2 10817 |
. . . . . 6
| |
| 19 | 18 | oveq2i 5978 |
. . . . 5
|
| 20 | 17, 19 | eqtrdi 2256 |
. . . 4
|
| 21 | 9 | recnd 8136 |
. . . . . 6
|
| 22 | 4cn 9149 |
. . . . . . 7
| |
| 23 | 22 | a1i 9 |
. . . . . 6
|
| 24 | 4re 9148 |
. . . . . . . 8
| |
| 25 | 24 | a1i 9 |
. . . . . . 7
|
| 26 | 4pos 9168 |
. . . . . . . 8
| |
| 27 | 26 | a1i 9 |
. . . . . . 7
|
| 28 | 25, 27 | gt0ap0d 8737 |
. . . . . 6
|
| 29 | 21, 23, 28 | divcanap3d 8903 |
. . . . 5
|
| 30 | 29 | eqcomd 2213 |
. . . 4
|
| 31 | 20, 30 | oveq12d 5985 |
. . 3
|
| 32 | 12 | sqcld 10853 |
. . . 4
|
| 33 | 23, 21 | mulcld 8128 |
. . . 4
|
| 34 | 32, 33, 23, 28 | divsubdirapd 8938 |
. . 3
|
| 35 | 31, 34 | eqtr4d 2243 |
. 2
|
| 36 | 8 | recnd 8136 |
. . . . . . . . 9
|
| 37 | 36 | sqcld 10853 |
. . . . . . . 8
|
| 38 | 13, 21 | mulcld 8128 |
. . . . . . . 8
|
| 39 | 37, 38, 33 | addsubassd 8438 |
. . . . . . 7
|
| 40 | 2cn 9142 |
. . . . . . . . . . . 12
| |
| 41 | 22, 40 | negsubdi2i 8393 |
. . . . . . . . . . 11
|
| 42 | 2p2e4 9198 |
. . . . . . . . . . . . . 14
| |
| 43 | 42 | oveq1i 5977 |
. . . . . . . . . . . . 13
|
| 44 | 40, 40 | pncan3oi 8323 |
. . . . . . . . . . . . 13
|
| 45 | 43, 44 | eqtr3i 2230 |
. . . . . . . . . . . 12
|
| 46 | 45 | negeqi 8301 |
. . . . . . . . . . 11
|
| 47 | 41, 46 | eqtr3i 2230 |
. . . . . . . . . 10
|
| 48 | 47 | oveq1i 5977 |
. . . . . . . . 9
|
| 49 | 13, 23, 21 | subdird 8522 |
. . . . . . . . 9
|
| 50 | 13, 21 | mulneg1d 8518 |
. . . . . . . . 9
|
| 51 | 48, 49, 50 | 3eqtr3a 2264 |
. . . . . . . 8
|
| 52 | 51 | oveq2d 5983 |
. . . . . . 7
|
| 53 | 37, 38 | negsubd 8424 |
. . . . . . 7
|
| 54 | 39, 52, 53 | 3eqtrd 2244 |
. . . . . 6
|
| 55 | 54 | oveq1d 5982 |
. . . . 5
|
| 56 | 10 | recnd 8136 |
. . . . . . . . 9
|
| 57 | binom2 10833 |
. . . . . . . . 9
| |
| 58 | 36, 56, 57 | syl2anc 411 |
. . . . . . . 8
|
| 59 | 7 | rpap0d 9859 |
. . . . . . . . . . . 12
|
| 60 | 21, 36, 59 | divcanap2d 8900 |
. . . . . . . . . . 11
|
| 61 | 60 | oveq2d 5983 |
. . . . . . . . . 10
|
| 62 | 61 | oveq2d 5983 |
. . . . . . . . 9
|
| 63 | 62 | oveq1d 5982 |
. . . . . . . 8
|
| 64 | 58, 63 | eqtrd 2240 |
. . . . . . 7
|
| 65 | 64 | oveq1d 5982 |
. . . . . 6
|
| 66 | 37, 38 | addcld 8127 |
. . . . . . 7
|
| 67 | 56 | sqcld 10853 |
. . . . . . 7
|
| 68 | 66, 67, 33 | addsubd 8439 |
. . . . . 6
|
| 69 | 65, 68 | eqtrd 2240 |
. . . . 5
|
| 70 | 37, 38 | subcld 8418 |
. . . . . . 7
|
| 71 | 70, 67 | addcld 8127 |
. . . . . 6
|
| 72 | 2z 9435 |
. . . . . . . . 9
| |
| 73 | 72 | a1i 9 |
. . . . . . . 8
|
| 74 | 7, 73 | rpexpcld 10879 |
. . . . . . 7
|
| 75 | 74 | rpap0d 9859 |
. . . . . 6
|
| 76 | 71, 37, 75 | divcanap4d 8904 |
. . . . 5
|
| 77 | 55, 69, 76 | 3eqtr4d 2250 |
. . . 4
|
| 78 | 37, 38, 37 | subdird 8522 |
. . . . . . . 8
|
| 79 | 37 | sqvald 10852 |
. . . . . . . . 9
|
| 80 | 13, 21, 37 | mul32d 8260 |
. . . . . . . . . 10
|
| 81 | 13, 37, 21 | mulassd 8131 |
. . . . . . . . . 10
|
| 82 | 80, 81 | eqtr2d 2241 |
. . . . . . . . 9
|
| 83 | 79, 82 | oveq12d 5985 |
. . . . . . . 8
|
| 84 | 78, 83 | eqtr4d 2243 |
. . . . . . 7
|
| 85 | 21, 36, 59 | sqdivapd 10868 |
. . . . . . . . 9
|
| 86 | 85 | oveq1d 5982 |
. . . . . . . 8
|
| 87 | 21 | sqcld 10853 |
. . . . . . . . 9
|
| 88 | 87, 37, 75 | divcanap1d 8899 |
. . . . . . . 8
|
| 89 | 86, 88 | eqtrd 2240 |
. . . . . . 7
|
| 90 | 84, 89 | oveq12d 5985 |
. . . . . 6
|
| 91 | 70, 67, 37 | adddird 8133 |
. . . . . 6
|
| 92 | binom2sub 10835 |
. . . . . . 7
| |
| 93 | 37, 21, 92 | syl2anc 411 |
. . . . . 6
|
| 94 | 90, 91, 93 | 3eqtr4d 2250 |
. . . . 5
|
| 95 | 94 | oveq1d 5982 |
. . . 4
|
| 96 | 77, 95 | eqtrd 2240 |
. . 3
|
| 97 | 96 | oveq1d 5982 |
. 2
|
| 98 | 37, 21 | subcld 8418 |
. . . . 5
|
| 99 | 98 | sqcld 10853 |
. . . 4
|
| 100 | 99, 37, 23, 75, 28 | divdivap1d 8930 |
. . 3
|
| 101 | 37, 23 | mulcomd 8129 |
. . . 4
|
| 102 | 101 | oveq2d 5983 |
. . 3
|
| 103 | 100, 102 | eqtrd 2240 |
. 2
|
| 104 | 35, 97, 103 | 3eqtrd 2244 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-13 2180 ax-14 2181 ax-ext 2189 ax-coll 4175 ax-sep 4178 ax-nul 4186 ax-pow 4234 ax-pr 4269 ax-un 4498 ax-setind 4603 ax-iinf 4654 ax-cnex 8051 ax-resscn 8052 ax-1cn 8053 ax-1re 8054 ax-icn 8055 ax-addcl 8056 ax-addrcl 8057 ax-mulcl 8058 ax-mulrcl 8059 ax-addcom 8060 ax-mulcom 8061 ax-addass 8062 ax-mulass 8063 ax-distr 8064 ax-i2m1 8065 ax-0lt1 8066 ax-1rid 8067 ax-0id 8068 ax-rnegex 8069 ax-precex 8070 ax-cnre 8071 ax-pre-ltirr 8072 ax-pre-ltwlin 8073 ax-pre-lttrn 8074 ax-pre-apti 8075 ax-pre-ltadd 8076 ax-pre-mulgt0 8077 ax-pre-mulext 8078 |
| This theorem depends on definitions: df-bi 117 df-dc 837 df-3or 982 df-3an 983 df-tru 1376 df-fal 1379 df-nf 1485 df-sb 1787 df-eu 2058 df-mo 2059 df-clab 2194 df-cleq 2200 df-clel 2203 df-nfc 2339 df-ne 2379 df-nel 2474 df-ral 2491 df-rex 2492 df-reu 2493 df-rmo 2494 df-rab 2495 df-v 2778 df-sbc 3006 df-csb 3102 df-dif 3176 df-un 3178 df-in 3180 df-ss 3187 df-nul 3469 df-if 3580 df-pw 3628 df-sn 3649 df-pr 3650 df-op 3652 df-uni 3865 df-int 3900 df-iun 3943 df-br 4060 df-opab 4122 df-mpt 4123 df-tr 4159 df-id 4358 df-po 4361 df-iso 4362 df-iord 4431 df-on 4433 df-ilim 4434 df-suc 4436 df-iom 4657 df-xp 4699 df-rel 4700 df-cnv 4701 df-co 4702 df-dm 4703 df-rn 4704 df-res 4705 df-ima 4706 df-iota 5251 df-fun 5292 df-fn 5293 df-f 5294 df-f1 5295 df-fo 5296 df-f1o 5297 df-fv 5298 df-riota 5922 df-ov 5970 df-oprab 5971 df-mpo 5972 df-1st 6249 df-2nd 6250 df-recs 6414 df-frec 6500 df-pnf 8144 df-mnf 8145 df-xr 8146 df-ltxr 8147 df-le 8148 df-sub 8280 df-neg 8281 df-reap 8683 df-ap 8690 df-div 8781 df-inn 9072 df-2 9130 df-3 9131 df-4 9132 df-n0 9331 df-z 9408 df-uz 9684 df-rp 9811 df-seqfrec 10630 df-exp 10721 |
| This theorem is referenced by: resqrexlemcalc2 11441 |
| Copyright terms: Public domain | W3C validator |