ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  absefib Unicode version

Theorem absefib 11939
Description: A complex number is real iff the exponential of its product with  _i has absolute value one. (Contributed by NM, 21-Aug-2008.)
Assertion
Ref Expression
absefib  |-  ( A  e.  CC  ->  ( A  e.  RR  <->  ( abs `  ( exp `  (
_i  x.  A )
) )  =  1 ) )

Proof of Theorem absefib
StepHypRef Expression
1 ef0 11840 . . . . 5  |-  ( exp `  0 )  =  1
21eqeq2i 2207 . . . 4  |-  ( ( exp `  -u (
Im `  A )
)  =  ( exp `  0 )  <->  ( exp `  -u ( Im `  A
) )  =  1 )
3 imcl 11022 . . . . . 6  |-  ( A  e.  CC  ->  (
Im `  A )  e.  RR )
43renegcld 8409 . . . . 5  |-  ( A  e.  CC  ->  -u (
Im `  A )  e.  RR )
5 0re 8029 . . . . 5  |-  0  e.  RR
6 reef11 11867 . . . . 5  |-  ( (
-u ( Im `  A )  e.  RR  /\  0  e.  RR )  ->  ( ( exp `  -u ( Im `  A ) )  =  ( exp `  0
)  <->  -u ( Im `  A )  =  0 ) )
74, 5, 6sylancl 413 . . . 4  |-  ( A  e.  CC  ->  (
( exp `  -u (
Im `  A )
)  =  ( exp `  0 )  <->  -u ( Im
`  A )  =  0 ) )
82, 7bitr3id 194 . . 3  |-  ( A  e.  CC  ->  (
( exp `  -u (
Im `  A )
)  =  1  <->  -u (
Im `  A )  =  0 ) )
93recnd 8058 . . . 4  |-  ( A  e.  CC  ->  (
Im `  A )  e.  CC )
109negeq0d 8332 . . 3  |-  ( A  e.  CC  ->  (
( Im `  A
)  =  0  <->  -u (
Im `  A )  =  0 ) )
118, 10bitr4d 191 . 2  |-  ( A  e.  CC  ->  (
( exp `  -u (
Im `  A )
)  =  1  <->  (
Im `  A )  =  0 ) )
12 ax-icn 7977 . . . . . 6  |-  _i  e.  CC
13 mulcl 8009 . . . . . 6  |-  ( ( _i  e.  CC  /\  A  e.  CC )  ->  ( _i  x.  A
)  e.  CC )
1412, 13mpan 424 . . . . 5  |-  ( A  e.  CC  ->  (
_i  x.  A )  e.  CC )
15 absef 11938 . . . . 5  |-  ( ( _i  x.  A )  e.  CC  ->  ( abs `  ( exp `  (
_i  x.  A )
) )  =  ( exp `  ( Re
`  ( _i  x.  A ) ) ) )
1614, 15syl 14 . . . 4  |-  ( A  e.  CC  ->  ( abs `  ( exp `  (
_i  x.  A )
) )  =  ( exp `  ( Re
`  ( _i  x.  A ) ) ) )
17 replim 11027 . . . . . . . . . 10  |-  ( A  e.  CC  ->  A  =  ( ( Re
`  A )  +  ( _i  x.  (
Im `  A )
) ) )
18 recl 11021 . . . . . . . . . . . 12  |-  ( A  e.  CC  ->  (
Re `  A )  e.  RR )
1918recnd 8058 . . . . . . . . . . 11  |-  ( A  e.  CC  ->  (
Re `  A )  e.  CC )
20 mulcl 8009 . . . . . . . . . . . 12  |-  ( ( _i  e.  CC  /\  ( Im `  A )  e.  CC )  -> 
( _i  x.  (
Im `  A )
)  e.  CC )
2112, 9, 20sylancr 414 . . . . . . . . . . 11  |-  ( A  e.  CC  ->  (
_i  x.  ( Im `  A ) )  e.  CC )
2219, 21addcomd 8180 . . . . . . . . . 10  |-  ( A  e.  CC  ->  (
( Re `  A
)  +  ( _i  x.  ( Im `  A ) ) )  =  ( ( _i  x.  ( Im `  A ) )  +  ( Re `  A
) ) )
2317, 22eqtrd 2229 . . . . . . . . 9  |-  ( A  e.  CC  ->  A  =  ( ( _i  x.  ( Im `  A ) )  +  ( Re `  A
) ) )
2423oveq2d 5939 . . . . . . . 8  |-  ( A  e.  CC  ->  (
_i  x.  A )  =  ( _i  x.  ( ( _i  x.  ( Im `  A ) )  +  ( Re
`  A ) ) ) )
25 adddi 8014 . . . . . . . . . . 11  |-  ( ( _i  e.  CC  /\  ( _i  x.  (
Im `  A )
)  e.  CC  /\  ( Re `  A )  e.  CC )  -> 
( _i  x.  (
( _i  x.  (
Im `  A )
)  +  ( Re
`  A ) ) )  =  ( ( _i  x.  ( _i  x.  ( Im `  A ) ) )  +  ( _i  x.  ( Re `  A ) ) ) )
2612, 25mp3an1 1335 . . . . . . . . . 10  |-  ( ( ( _i  x.  (
Im `  A )
)  e.  CC  /\  ( Re `  A )  e.  CC )  -> 
( _i  x.  (
( _i  x.  (
Im `  A )
)  +  ( Re
`  A ) ) )  =  ( ( _i  x.  ( _i  x.  ( Im `  A ) ) )  +  ( _i  x.  ( Re `  A ) ) ) )
2721, 19, 26syl2anc 411 . . . . . . . . 9  |-  ( A  e.  CC  ->  (
_i  x.  ( (
_i  x.  ( Im `  A ) )  +  ( Re `  A
) ) )  =  ( ( _i  x.  ( _i  x.  (
Im `  A )
) )  +  ( _i  x.  ( Re
`  A ) ) ) )
28 ixi 8613 . . . . . . . . . . . 12  |-  ( _i  x.  _i )  = 
-u 1
2928oveq1i 5933 . . . . . . . . . . 11  |-  ( ( _i  x.  _i )  x.  ( Im `  A ) )  =  ( -u 1  x.  ( Im `  A
) )
30 mulass 8013 . . . . . . . . . . . . 13  |-  ( ( _i  e.  CC  /\  _i  e.  CC  /\  (
Im `  A )  e.  CC )  ->  (
( _i  x.  _i )  x.  ( Im `  A ) )  =  ( _i  x.  (
_i  x.  ( Im `  A ) ) ) )
3112, 12, 30mp3an12 1338 . . . . . . . . . . . 12  |-  ( ( Im `  A )  e.  CC  ->  (
( _i  x.  _i )  x.  ( Im `  A ) )  =  ( _i  x.  (
_i  x.  ( Im `  A ) ) ) )
329, 31syl 14 . . . . . . . . . . 11  |-  ( A  e.  CC  ->  (
( _i  x.  _i )  x.  ( Im `  A ) )  =  ( _i  x.  (
_i  x.  ( Im `  A ) ) ) )
339mulm1d 8439 . . . . . . . . . . 11  |-  ( A  e.  CC  ->  ( -u 1  x.  ( Im
`  A ) )  =  -u ( Im `  A ) )
3429, 32, 333eqtr3a 2253 . . . . . . . . . 10  |-  ( A  e.  CC  ->  (
_i  x.  ( _i  x.  ( Im `  A
) ) )  = 
-u ( Im `  A ) )
3534oveq1d 5938 . . . . . . . . 9  |-  ( A  e.  CC  ->  (
( _i  x.  (
_i  x.  ( Im `  A ) ) )  +  ( _i  x.  ( Re `  A ) ) )  =  (
-u ( Im `  A )  +  ( _i  x.  ( Re
`  A ) ) ) )
3627, 35eqtrd 2229 . . . . . . . 8  |-  ( A  e.  CC  ->  (
_i  x.  ( (
_i  x.  ( Im `  A ) )  +  ( Re `  A
) ) )  =  ( -u ( Im
`  A )  +  ( _i  x.  (
Re `  A )
) ) )
3724, 36eqtrd 2229 . . . . . . 7  |-  ( A  e.  CC  ->  (
_i  x.  A )  =  ( -u (
Im `  A )  +  ( _i  x.  ( Re `  A ) ) ) )
3837fveq2d 5563 . . . . . 6  |-  ( A  e.  CC  ->  (
Re `  ( _i  x.  A ) )  =  ( Re `  ( -u ( Im `  A
)  +  ( _i  x.  ( Re `  A ) ) ) ) )
394, 18crred 11144 . . . . . 6  |-  ( A  e.  CC  ->  (
Re `  ( -u (
Im `  A )  +  ( _i  x.  ( Re `  A ) ) ) )  = 
-u ( Im `  A ) )
4038, 39eqtrd 2229 . . . . 5  |-  ( A  e.  CC  ->  (
Re `  ( _i  x.  A ) )  = 
-u ( Im `  A ) )
4140fveq2d 5563 . . . 4  |-  ( A  e.  CC  ->  ( exp `  ( Re `  ( _i  x.  A
) ) )  =  ( exp `  -u (
Im `  A )
) )
4216, 41eqtrd 2229 . . 3  |-  ( A  e.  CC  ->  ( abs `  ( exp `  (
_i  x.  A )
) )  =  ( exp `  -u (
Im `  A )
) )
4342eqeq1d 2205 . 2  |-  ( A  e.  CC  ->  (
( abs `  ( exp `  ( _i  x.  A ) ) )  =  1  <->  ( exp `  -u ( Im `  A
) )  =  1 ) )
44 reim0b 11030 . 2  |-  ( A  e.  CC  ->  ( A  e.  RR  <->  ( Im `  A )  =  0 ) )
4511, 43, 443bitr4rd 221 1  |-  ( A  e.  CC  ->  ( A  e.  RR  <->  ( abs `  ( exp `  (
_i  x.  A )
) )  =  1 ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 105    = wceq 1364    e. wcel 2167   ` cfv 5259  (class class class)co 5923   CCcc 7880   RRcr 7881   0cc0 7882   1c1 7883   _ici 7884    + caddc 7885    x. cmul 7887   -ucneg 8201   Recre 11008   Imcim 11009   abscabs 11165   expce 11810
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-13 2169  ax-14 2170  ax-ext 2178  ax-coll 4149  ax-sep 4152  ax-nul 4160  ax-pow 4208  ax-pr 4243  ax-un 4469  ax-setind 4574  ax-iinf 4625  ax-cnex 7973  ax-resscn 7974  ax-1cn 7975  ax-1re 7976  ax-icn 7977  ax-addcl 7978  ax-addrcl 7979  ax-mulcl 7980  ax-mulrcl 7981  ax-addcom 7982  ax-mulcom 7983  ax-addass 7984  ax-mulass 7985  ax-distr 7986  ax-i2m1 7987  ax-0lt1 7988  ax-1rid 7989  ax-0id 7990  ax-rnegex 7991  ax-precex 7992  ax-cnre 7993  ax-pre-ltirr 7994  ax-pre-ltwlin 7995  ax-pre-lttrn 7996  ax-pre-apti 7997  ax-pre-ltadd 7998  ax-pre-mulgt0 7999  ax-pre-mulext 8000  ax-arch 8001  ax-caucvg 8002
This theorem depends on definitions:  df-bi 117  df-dc 836  df-3or 981  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1475  df-sb 1777  df-eu 2048  df-mo 2049  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ne 2368  df-nel 2463  df-ral 2480  df-rex 2481  df-reu 2482  df-rmo 2483  df-rab 2484  df-v 2765  df-sbc 2990  df-csb 3085  df-dif 3159  df-un 3161  df-in 3163  df-ss 3170  df-nul 3452  df-if 3563  df-pw 3608  df-sn 3629  df-pr 3630  df-op 3632  df-uni 3841  df-int 3876  df-iun 3919  df-disj 4012  df-br 4035  df-opab 4096  df-mpt 4097  df-tr 4133  df-id 4329  df-po 4332  df-iso 4333  df-iord 4402  df-on 4404  df-ilim 4405  df-suc 4407  df-iom 4628  df-xp 4670  df-rel 4671  df-cnv 4672  df-co 4673  df-dm 4674  df-rn 4675  df-res 4676  df-ima 4677  df-iota 5220  df-fun 5261  df-fn 5262  df-f 5263  df-f1 5264  df-fo 5265  df-f1o 5266  df-fv 5267  df-isom 5268  df-riota 5878  df-ov 5926  df-oprab 5927  df-mpo 5928  df-1st 6200  df-2nd 6201  df-recs 6365  df-irdg 6430  df-frec 6451  df-1o 6476  df-oadd 6480  df-er 6594  df-en 6802  df-dom 6803  df-fin 6804  df-sup 7052  df-pnf 8066  df-mnf 8067  df-xr 8068  df-ltxr 8069  df-le 8070  df-sub 8202  df-neg 8203  df-reap 8605  df-ap 8612  df-div 8703  df-inn 8994  df-2 9052  df-3 9053  df-4 9054  df-n0 9253  df-z 9330  df-uz 9605  df-q 9697  df-rp 9732  df-ico 9972  df-fz 10087  df-fzo 10221  df-seqfrec 10543  df-exp 10634  df-fac 10821  df-bc 10843  df-ihash 10871  df-cj 11010  df-re 11011  df-im 11012  df-rsqrt 11166  df-abs 11167  df-clim 11447  df-sumdc 11522  df-ef 11816  df-sin 11818  df-cos 11819
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator