ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  absefib Unicode version

Theorem absefib 11791
Description: A complex number is real iff the exponential of its product with  _i has absolute value one. (Contributed by NM, 21-Aug-2008.)
Assertion
Ref Expression
absefib  |-  ( A  e.  CC  ->  ( A  e.  RR  <->  ( abs `  ( exp `  (
_i  x.  A )
) )  =  1 ) )

Proof of Theorem absefib
StepHypRef Expression
1 ef0 11693 . . . . 5  |-  ( exp `  0 )  =  1
21eqeq2i 2198 . . . 4  |-  ( ( exp `  -u (
Im `  A )
)  =  ( exp `  0 )  <->  ( exp `  -u ( Im `  A
) )  =  1 )
3 imcl 10876 . . . . . 6  |-  ( A  e.  CC  ->  (
Im `  A )  e.  RR )
43renegcld 8350 . . . . 5  |-  ( A  e.  CC  ->  -u (
Im `  A )  e.  RR )
5 0re 7970 . . . . 5  |-  0  e.  RR
6 reef11 11720 . . . . 5  |-  ( (
-u ( Im `  A )  e.  RR  /\  0  e.  RR )  ->  ( ( exp `  -u ( Im `  A ) )  =  ( exp `  0
)  <->  -u ( Im `  A )  =  0 ) )
74, 5, 6sylancl 413 . . . 4  |-  ( A  e.  CC  ->  (
( exp `  -u (
Im `  A )
)  =  ( exp `  0 )  <->  -u ( Im
`  A )  =  0 ) )
82, 7bitr3id 194 . . 3  |-  ( A  e.  CC  ->  (
( exp `  -u (
Im `  A )
)  =  1  <->  -u (
Im `  A )  =  0 ) )
93recnd 7999 . . . 4  |-  ( A  e.  CC  ->  (
Im `  A )  e.  CC )
109negeq0d 8273 . . 3  |-  ( A  e.  CC  ->  (
( Im `  A
)  =  0  <->  -u (
Im `  A )  =  0 ) )
118, 10bitr4d 191 . 2  |-  ( A  e.  CC  ->  (
( exp `  -u (
Im `  A )
)  =  1  <->  (
Im `  A )  =  0 ) )
12 ax-icn 7919 . . . . . 6  |-  _i  e.  CC
13 mulcl 7951 . . . . . 6  |-  ( ( _i  e.  CC  /\  A  e.  CC )  ->  ( _i  x.  A
)  e.  CC )
1412, 13mpan 424 . . . . 5  |-  ( A  e.  CC  ->  (
_i  x.  A )  e.  CC )
15 absef 11790 . . . . 5  |-  ( ( _i  x.  A )  e.  CC  ->  ( abs `  ( exp `  (
_i  x.  A )
) )  =  ( exp `  ( Re
`  ( _i  x.  A ) ) ) )
1614, 15syl 14 . . . 4  |-  ( A  e.  CC  ->  ( abs `  ( exp `  (
_i  x.  A )
) )  =  ( exp `  ( Re
`  ( _i  x.  A ) ) ) )
17 replim 10881 . . . . . . . . . 10  |-  ( A  e.  CC  ->  A  =  ( ( Re
`  A )  +  ( _i  x.  (
Im `  A )
) ) )
18 recl 10875 . . . . . . . . . . . 12  |-  ( A  e.  CC  ->  (
Re `  A )  e.  RR )
1918recnd 7999 . . . . . . . . . . 11  |-  ( A  e.  CC  ->  (
Re `  A )  e.  CC )
20 mulcl 7951 . . . . . . . . . . . 12  |-  ( ( _i  e.  CC  /\  ( Im `  A )  e.  CC )  -> 
( _i  x.  (
Im `  A )
)  e.  CC )
2112, 9, 20sylancr 414 . . . . . . . . . . 11  |-  ( A  e.  CC  ->  (
_i  x.  ( Im `  A ) )  e.  CC )
2219, 21addcomd 8121 . . . . . . . . . 10  |-  ( A  e.  CC  ->  (
( Re `  A
)  +  ( _i  x.  ( Im `  A ) ) )  =  ( ( _i  x.  ( Im `  A ) )  +  ( Re `  A
) ) )
2317, 22eqtrd 2220 . . . . . . . . 9  |-  ( A  e.  CC  ->  A  =  ( ( _i  x.  ( Im `  A ) )  +  ( Re `  A
) ) )
2423oveq2d 5904 . . . . . . . 8  |-  ( A  e.  CC  ->  (
_i  x.  A )  =  ( _i  x.  ( ( _i  x.  ( Im `  A ) )  +  ( Re
`  A ) ) ) )
25 adddi 7956 . . . . . . . . . . 11  |-  ( ( _i  e.  CC  /\  ( _i  x.  (
Im `  A )
)  e.  CC  /\  ( Re `  A )  e.  CC )  -> 
( _i  x.  (
( _i  x.  (
Im `  A )
)  +  ( Re
`  A ) ) )  =  ( ( _i  x.  ( _i  x.  ( Im `  A ) ) )  +  ( _i  x.  ( Re `  A ) ) ) )
2612, 25mp3an1 1334 . . . . . . . . . 10  |-  ( ( ( _i  x.  (
Im `  A )
)  e.  CC  /\  ( Re `  A )  e.  CC )  -> 
( _i  x.  (
( _i  x.  (
Im `  A )
)  +  ( Re
`  A ) ) )  =  ( ( _i  x.  ( _i  x.  ( Im `  A ) ) )  +  ( _i  x.  ( Re `  A ) ) ) )
2721, 19, 26syl2anc 411 . . . . . . . . 9  |-  ( A  e.  CC  ->  (
_i  x.  ( (
_i  x.  ( Im `  A ) )  +  ( Re `  A
) ) )  =  ( ( _i  x.  ( _i  x.  (
Im `  A )
) )  +  ( _i  x.  ( Re
`  A ) ) ) )
28 ixi 8553 . . . . . . . . . . . 12  |-  ( _i  x.  _i )  = 
-u 1
2928oveq1i 5898 . . . . . . . . . . 11  |-  ( ( _i  x.  _i )  x.  ( Im `  A ) )  =  ( -u 1  x.  ( Im `  A
) )
30 mulass 7955 . . . . . . . . . . . . 13  |-  ( ( _i  e.  CC  /\  _i  e.  CC  /\  (
Im `  A )  e.  CC )  ->  (
( _i  x.  _i )  x.  ( Im `  A ) )  =  ( _i  x.  (
_i  x.  ( Im `  A ) ) ) )
3112, 12, 30mp3an12 1337 . . . . . . . . . . . 12  |-  ( ( Im `  A )  e.  CC  ->  (
( _i  x.  _i )  x.  ( Im `  A ) )  =  ( _i  x.  (
_i  x.  ( Im `  A ) ) ) )
329, 31syl 14 . . . . . . . . . . 11  |-  ( A  e.  CC  ->  (
( _i  x.  _i )  x.  ( Im `  A ) )  =  ( _i  x.  (
_i  x.  ( Im `  A ) ) ) )
339mulm1d 8380 . . . . . . . . . . 11  |-  ( A  e.  CC  ->  ( -u 1  x.  ( Im
`  A ) )  =  -u ( Im `  A ) )
3429, 32, 333eqtr3a 2244 . . . . . . . . . 10  |-  ( A  e.  CC  ->  (
_i  x.  ( _i  x.  ( Im `  A
) ) )  = 
-u ( Im `  A ) )
3534oveq1d 5903 . . . . . . . . 9  |-  ( A  e.  CC  ->  (
( _i  x.  (
_i  x.  ( Im `  A ) ) )  +  ( _i  x.  ( Re `  A ) ) )  =  (
-u ( Im `  A )  +  ( _i  x.  ( Re
`  A ) ) ) )
3627, 35eqtrd 2220 . . . . . . . 8  |-  ( A  e.  CC  ->  (
_i  x.  ( (
_i  x.  ( Im `  A ) )  +  ( Re `  A
) ) )  =  ( -u ( Im
`  A )  +  ( _i  x.  (
Re `  A )
) ) )
3724, 36eqtrd 2220 . . . . . . 7  |-  ( A  e.  CC  ->  (
_i  x.  A )  =  ( -u (
Im `  A )  +  ( _i  x.  ( Re `  A ) ) ) )
3837fveq2d 5531 . . . . . 6  |-  ( A  e.  CC  ->  (
Re `  ( _i  x.  A ) )  =  ( Re `  ( -u ( Im `  A
)  +  ( _i  x.  ( Re `  A ) ) ) ) )
394, 18crred 10998 . . . . . 6  |-  ( A  e.  CC  ->  (
Re `  ( -u (
Im `  A )  +  ( _i  x.  ( Re `  A ) ) ) )  = 
-u ( Im `  A ) )
4038, 39eqtrd 2220 . . . . 5  |-  ( A  e.  CC  ->  (
Re `  ( _i  x.  A ) )  = 
-u ( Im `  A ) )
4140fveq2d 5531 . . . 4  |-  ( A  e.  CC  ->  ( exp `  ( Re `  ( _i  x.  A
) ) )  =  ( exp `  -u (
Im `  A )
) )
4216, 41eqtrd 2220 . . 3  |-  ( A  e.  CC  ->  ( abs `  ( exp `  (
_i  x.  A )
) )  =  ( exp `  -u (
Im `  A )
) )
4342eqeq1d 2196 . 2  |-  ( A  e.  CC  ->  (
( abs `  ( exp `  ( _i  x.  A ) ) )  =  1  <->  ( exp `  -u ( Im `  A
) )  =  1 ) )
44 reim0b 10884 . 2  |-  ( A  e.  CC  ->  ( A  e.  RR  <->  ( Im `  A )  =  0 ) )
4511, 43, 443bitr4rd 221 1  |-  ( A  e.  CC  ->  ( A  e.  RR  <->  ( abs `  ( exp `  (
_i  x.  A )
) )  =  1 ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 105    = wceq 1363    e. wcel 2158   ` cfv 5228  (class class class)co 5888   CCcc 7822   RRcr 7823   0cc0 7824   1c1 7825   _ici 7826    + caddc 7827    x. cmul 7829   -ucneg 8142   Recre 10862   Imcim 10863   abscabs 11019   expce 11663
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1457  ax-7 1458  ax-gen 1459  ax-ie1 1503  ax-ie2 1504  ax-8 1514  ax-10 1515  ax-11 1516  ax-i12 1517  ax-bndl 1519  ax-4 1520  ax-17 1536  ax-i9 1540  ax-ial 1544  ax-i5r 1545  ax-13 2160  ax-14 2161  ax-ext 2169  ax-coll 4130  ax-sep 4133  ax-nul 4141  ax-pow 4186  ax-pr 4221  ax-un 4445  ax-setind 4548  ax-iinf 4599  ax-cnex 7915  ax-resscn 7916  ax-1cn 7917  ax-1re 7918  ax-icn 7919  ax-addcl 7920  ax-addrcl 7921  ax-mulcl 7922  ax-mulrcl 7923  ax-addcom 7924  ax-mulcom 7925  ax-addass 7926  ax-mulass 7927  ax-distr 7928  ax-i2m1 7929  ax-0lt1 7930  ax-1rid 7931  ax-0id 7932  ax-rnegex 7933  ax-precex 7934  ax-cnre 7935  ax-pre-ltirr 7936  ax-pre-ltwlin 7937  ax-pre-lttrn 7938  ax-pre-apti 7939  ax-pre-ltadd 7940  ax-pre-mulgt0 7941  ax-pre-mulext 7942  ax-arch 7943  ax-caucvg 7944
This theorem depends on definitions:  df-bi 117  df-dc 836  df-3or 980  df-3an 981  df-tru 1366  df-fal 1369  df-nf 1471  df-sb 1773  df-eu 2039  df-mo 2040  df-clab 2174  df-cleq 2180  df-clel 2183  df-nfc 2318  df-ne 2358  df-nel 2453  df-ral 2470  df-rex 2471  df-reu 2472  df-rmo 2473  df-rab 2474  df-v 2751  df-sbc 2975  df-csb 3070  df-dif 3143  df-un 3145  df-in 3147  df-ss 3154  df-nul 3435  df-if 3547  df-pw 3589  df-sn 3610  df-pr 3611  df-op 3613  df-uni 3822  df-int 3857  df-iun 3900  df-disj 3993  df-br 4016  df-opab 4077  df-mpt 4078  df-tr 4114  df-id 4305  df-po 4308  df-iso 4309  df-iord 4378  df-on 4380  df-ilim 4381  df-suc 4383  df-iom 4602  df-xp 4644  df-rel 4645  df-cnv 4646  df-co 4647  df-dm 4648  df-rn 4649  df-res 4650  df-ima 4651  df-iota 5190  df-fun 5230  df-fn 5231  df-f 5232  df-f1 5233  df-fo 5234  df-f1o 5235  df-fv 5236  df-isom 5237  df-riota 5844  df-ov 5891  df-oprab 5892  df-mpo 5893  df-1st 6154  df-2nd 6155  df-recs 6319  df-irdg 6384  df-frec 6405  df-1o 6430  df-oadd 6434  df-er 6548  df-en 6754  df-dom 6755  df-fin 6756  df-sup 6996  df-pnf 8007  df-mnf 8008  df-xr 8009  df-ltxr 8010  df-le 8011  df-sub 8143  df-neg 8144  df-reap 8545  df-ap 8552  df-div 8643  df-inn 8933  df-2 8991  df-3 8992  df-4 8993  df-n0 9190  df-z 9267  df-uz 9542  df-q 9633  df-rp 9667  df-ico 9907  df-fz 10022  df-fzo 10156  df-seqfrec 10459  df-exp 10533  df-fac 10719  df-bc 10741  df-ihash 10769  df-cj 10864  df-re 10865  df-im 10866  df-rsqrt 11020  df-abs 11021  df-clim 11300  df-sumdc 11375  df-ef 11669  df-sin 11671  df-cos 11672
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator