ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  fnsnsplitdc Unicode version

Theorem fnsnsplitdc 6563
Description: Split a function into a single point and all the rest. (Contributed by Stefan O'Rear, 27-Feb-2015.) (Revised by Jim Kingdon, 29-Jan-2023.)
Assertion
Ref Expression
fnsnsplitdc  |-  ( ( A. x  e.  A  A. y  e.  A DECID  x  =  y  /\  F  Fn  A  /\  X  e.  A
)  ->  F  =  ( ( F  |`  ( A  \  { X } ) )  u. 
{ <. X ,  ( F `  X )
>. } ) )
Distinct variable groups:    x, A, y   
x, X, y
Allowed substitution hints:    F( x, y)

Proof of Theorem fnsnsplitdc
StepHypRef Expression
1 fnresdm 5367 . . 3  |-  ( F  Fn  A  ->  ( F  |`  A )  =  F )
213ad2ant2 1021 . 2  |-  ( ( A. x  e.  A  A. y  e.  A DECID  x  =  y  /\  F  Fn  A  /\  X  e.  A
)  ->  ( F  |`  A )  =  F )
3 resundi 4959 . . 3  |-  ( F  |`  ( ( A  \  { X } )  u. 
{ X } ) )  =  ( ( F  |`  ( A  \  { X } ) )  u.  ( F  |`  { X } ) )
4 dcdifsnid 6562 . . . . 5  |-  ( ( A. x  e.  A  A. y  e.  A DECID  x  =  y  /\  X  e.  A )  ->  (
( A  \  { X } )  u.  { X } )  =  A )
543adant2 1018 . . . 4  |-  ( ( A. x  e.  A  A. y  e.  A DECID  x  =  y  /\  F  Fn  A  /\  X  e.  A
)  ->  ( ( A  \  { X }
)  u.  { X } )  =  A )
65reseq2d 4946 . . 3  |-  ( ( A. x  e.  A  A. y  e.  A DECID  x  =  y  /\  F  Fn  A  /\  X  e.  A
)  ->  ( F  |`  ( ( A  \  { X } )  u. 
{ X } ) )  =  ( F  |`  A ) )
7 fnressn 5748 . . . . 5  |-  ( ( F  Fn  A  /\  X  e.  A )  ->  ( F  |`  { X } )  =  { <. X ,  ( F `
 X ) >. } )
87uneq2d 3317 . . . 4  |-  ( ( F  Fn  A  /\  X  e.  A )  ->  ( ( F  |`  ( A  \  { X } ) )  u.  ( F  |`  { X } ) )  =  ( ( F  |`  ( A  \  { X } ) )  u. 
{ <. X ,  ( F `  X )
>. } ) )
983adant1 1017 . . 3  |-  ( ( A. x  e.  A  A. y  e.  A DECID  x  =  y  /\  F  Fn  A  /\  X  e.  A
)  ->  ( ( F  |`  ( A  \  { X } ) )  u.  ( F  |`  { X } ) )  =  ( ( F  |`  ( A  \  { X } ) )  u. 
{ <. X ,  ( F `  X )
>. } ) )
103, 6, 93eqtr3a 2253 . 2  |-  ( ( A. x  e.  A  A. y  e.  A DECID  x  =  y  /\  F  Fn  A  /\  X  e.  A
)  ->  ( F  |`  A )  =  ( ( F  |`  ( A  \  { X }
) )  u.  { <. X ,  ( F `
 X ) >. } ) )
112, 10eqtr3d 2231 1  |-  ( ( A. x  e.  A  A. y  e.  A DECID  x  =  y  /\  F  Fn  A  /\  X  e.  A
)  ->  F  =  ( ( F  |`  ( A  \  { X } ) )  u. 
{ <. X ,  ( F `  X )
>. } ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104  DECID wdc 835    /\ w3a 980    = wceq 1364    e. wcel 2167   A.wral 2475    \ cdif 3154    u. cun 3155   {csn 3622   <.cop 3625    |` cres 4665    Fn wfn 5253   ` cfv 5258
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-14 2170  ax-ext 2178  ax-sep 4151  ax-pow 4207  ax-pr 4242
This theorem depends on definitions:  df-bi 117  df-dc 836  df-3an 982  df-tru 1367  df-nf 1475  df-sb 1777  df-eu 2048  df-mo 2049  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ral 2480  df-rex 2481  df-reu 2482  df-v 2765  df-sbc 2990  df-dif 3159  df-un 3161  df-in 3163  df-ss 3170  df-pw 3607  df-sn 3628  df-pr 3629  df-op 3631  df-uni 3840  df-br 4034  df-opab 4095  df-id 4328  df-xp 4669  df-rel 4670  df-cnv 4671  df-co 4672  df-dm 4673  df-rn 4674  df-res 4675  df-ima 4676  df-iota 5219  df-fun 5260  df-fn 5261  df-f 5262  df-f1 5263  df-fo 5264  df-f1o 5265  df-fv 5266
This theorem is referenced by:  funresdfunsndc  6564
  Copyright terms: Public domain W3C validator