ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  fnsnsplitdc Unicode version

Theorem fnsnsplitdc 6508
Description: Split a function into a single point and all the rest. (Contributed by Stefan O'Rear, 27-Feb-2015.) (Revised by Jim Kingdon, 29-Jan-2023.)
Assertion
Ref Expression
fnsnsplitdc  |-  ( ( A. x  e.  A  A. y  e.  A DECID  x  =  y  /\  F  Fn  A  /\  X  e.  A
)  ->  F  =  ( ( F  |`  ( A  \  { X } ) )  u. 
{ <. X ,  ( F `  X )
>. } ) )
Distinct variable groups:    x, A, y   
x, X, y
Allowed substitution hints:    F( x, y)

Proof of Theorem fnsnsplitdc
StepHypRef Expression
1 fnresdm 5327 . . 3  |-  ( F  Fn  A  ->  ( F  |`  A )  =  F )
213ad2ant2 1019 . 2  |-  ( ( A. x  e.  A  A. y  e.  A DECID  x  =  y  /\  F  Fn  A  /\  X  e.  A
)  ->  ( F  |`  A )  =  F )
3 resundi 4922 . . 3  |-  ( F  |`  ( ( A  \  { X } )  u. 
{ X } ) )  =  ( ( F  |`  ( A  \  { X } ) )  u.  ( F  |`  { X } ) )
4 dcdifsnid 6507 . . . . 5  |-  ( ( A. x  e.  A  A. y  e.  A DECID  x  =  y  /\  X  e.  A )  ->  (
( A  \  { X } )  u.  { X } )  =  A )
543adant2 1016 . . . 4  |-  ( ( A. x  e.  A  A. y  e.  A DECID  x  =  y  /\  F  Fn  A  /\  X  e.  A
)  ->  ( ( A  \  { X }
)  u.  { X } )  =  A )
65reseq2d 4909 . . 3  |-  ( ( A. x  e.  A  A. y  e.  A DECID  x  =  y  /\  F  Fn  A  /\  X  e.  A
)  ->  ( F  |`  ( ( A  \  { X } )  u. 
{ X } ) )  =  ( F  |`  A ) )
7 fnressn 5704 . . . . 5  |-  ( ( F  Fn  A  /\  X  e.  A )  ->  ( F  |`  { X } )  =  { <. X ,  ( F `
 X ) >. } )
87uneq2d 3291 . . . 4  |-  ( ( F  Fn  A  /\  X  e.  A )  ->  ( ( F  |`  ( A  \  { X } ) )  u.  ( F  |`  { X } ) )  =  ( ( F  |`  ( A  \  { X } ) )  u. 
{ <. X ,  ( F `  X )
>. } ) )
983adant1 1015 . . 3  |-  ( ( A. x  e.  A  A. y  e.  A DECID  x  =  y  /\  F  Fn  A  /\  X  e.  A
)  ->  ( ( F  |`  ( A  \  { X } ) )  u.  ( F  |`  { X } ) )  =  ( ( F  |`  ( A  \  { X } ) )  u. 
{ <. X ,  ( F `  X )
>. } ) )
103, 6, 93eqtr3a 2234 . 2  |-  ( ( A. x  e.  A  A. y  e.  A DECID  x  =  y  /\  F  Fn  A  /\  X  e.  A
)  ->  ( F  |`  A )  =  ( ( F  |`  ( A  \  { X }
) )  u.  { <. X ,  ( F `
 X ) >. } ) )
112, 10eqtr3d 2212 1  |-  ( ( A. x  e.  A  A. y  e.  A DECID  x  =  y  /\  F  Fn  A  /\  X  e.  A
)  ->  F  =  ( ( F  |`  ( A  \  { X } ) )  u. 
{ <. X ,  ( F `  X )
>. } ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104  DECID wdc 834    /\ w3a 978    = wceq 1353    e. wcel 2148   A.wral 2455    \ cdif 3128    u. cun 3129   {csn 3594   <.cop 3597    |` cres 4630    Fn wfn 5213   ` cfv 5218
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 614  ax-in2 615  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-14 2151  ax-ext 2159  ax-sep 4123  ax-pow 4176  ax-pr 4211
This theorem depends on definitions:  df-bi 117  df-dc 835  df-3an 980  df-tru 1356  df-nf 1461  df-sb 1763  df-eu 2029  df-mo 2030  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-ral 2460  df-rex 2461  df-reu 2462  df-v 2741  df-sbc 2965  df-dif 3133  df-un 3135  df-in 3137  df-ss 3144  df-pw 3579  df-sn 3600  df-pr 3601  df-op 3603  df-uni 3812  df-br 4006  df-opab 4067  df-id 4295  df-xp 4634  df-rel 4635  df-cnv 4636  df-co 4637  df-dm 4638  df-rn 4639  df-res 4640  df-ima 4641  df-iota 5180  df-fun 5220  df-fn 5221  df-f 5222  df-f1 5223  df-fo 5224  df-f1o 5225  df-fv 5226
This theorem is referenced by:  funresdfunsndc  6509
  Copyright terms: Public domain W3C validator