ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  cnblcld Unicode version

Theorem cnblcld 14771
Description: Two ways to write the closed ball centered at zero. (Contributed by Mario Carneiro, 8-Sep-2015.)
Hypothesis
Ref Expression
cnblcld.1  |-  D  =  ( abs  o.  -  )
Assertion
Ref Expression
cnblcld  |-  ( R  e.  RR*  ->  ( `' abs " ( 0 [,] R ) )  =  { x  e.  CC  |  ( 0 D x )  <_  R } )
Distinct variable groups:    x, D    x, R

Proof of Theorem cnblcld
StepHypRef Expression
1 absf 11275 . . . . 5  |-  abs : CC
--> RR
2 ffn 5407 . . . . 5  |-  ( abs
: CC --> RR  ->  abs 
Fn  CC )
3 elpreima 5681 . . . . 5  |-  ( abs 
Fn  CC  ->  ( x  e.  ( `' abs " ( 0 [,] R
) )  <->  ( x  e.  CC  /\  ( abs `  x )  e.  ( 0 [,] R ) ) ) )
41, 2, 3mp2b 8 . . . 4  |-  ( x  e.  ( `' abs " ( 0 [,] R
) )  <->  ( x  e.  CC  /\  ( abs `  x )  e.  ( 0 [,] R ) ) )
5 df-3an 982 . . . . . . 7  |-  ( ( ( abs `  x
)  e.  RR*  /\  0  <_  ( abs `  x
)  /\  ( abs `  x )  <_  R
)  <->  ( ( ( abs `  x )  e.  RR*  /\  0  <_  ( abs `  x
) )  /\  ( abs `  x )  <_  R ) )
6 abscl 11216 . . . . . . . . . . 11  |-  ( x  e.  CC  ->  ( abs `  x )  e.  RR )
76rexrd 8076 . . . . . . . . . 10  |-  ( x  e.  CC  ->  ( abs `  x )  e. 
RR* )
8 absge0 11225 . . . . . . . . . 10  |-  ( x  e.  CC  ->  0  <_  ( abs `  x
) )
97, 8jca 306 . . . . . . . . 9  |-  ( x  e.  CC  ->  (
( abs `  x
)  e.  RR*  /\  0  <_  ( abs `  x
) ) )
109adantl 277 . . . . . . . 8  |-  ( ( R  e.  RR*  /\  x  e.  CC )  ->  (
( abs `  x
)  e.  RR*  /\  0  <_  ( abs `  x
) ) )
1110biantrurd 305 . . . . . . 7  |-  ( ( R  e.  RR*  /\  x  e.  CC )  ->  (
( abs `  x
)  <_  R  <->  ( (
( abs `  x
)  e.  RR*  /\  0  <_  ( abs `  x
) )  /\  ( abs `  x )  <_  R ) ) )
125, 11bitr4id 199 . . . . . 6  |-  ( ( R  e.  RR*  /\  x  e.  CC )  ->  (
( ( abs `  x
)  e.  RR*  /\  0  <_  ( abs `  x
)  /\  ( abs `  x )  <_  R
)  <->  ( abs `  x
)  <_  R )
)
13 0xr 8073 . . . . . . 7  |-  0  e.  RR*
14 simpl 109 . . . . . . 7  |-  ( ( R  e.  RR*  /\  x  e.  CC )  ->  R  e.  RR* )
15 elicc1 9999 . . . . . . 7  |-  ( ( 0  e.  RR*  /\  R  e.  RR* )  ->  (
( abs `  x
)  e.  ( 0 [,] R )  <->  ( ( abs `  x )  e. 
RR*  /\  0  <_  ( abs `  x )  /\  ( abs `  x
)  <_  R )
) )
1613, 14, 15sylancr 414 . . . . . 6  |-  ( ( R  e.  RR*  /\  x  e.  CC )  ->  (
( abs `  x
)  e.  ( 0 [,] R )  <->  ( ( abs `  x )  e. 
RR*  /\  0  <_  ( abs `  x )  /\  ( abs `  x
)  <_  R )
) )
17 0cn 8018 . . . . . . . . . 10  |-  0  e.  CC
18 cnblcld.1 . . . . . . . . . . . 12  |-  D  =  ( abs  o.  -  )
1918cnmetdval 14765 . . . . . . . . . . 11  |-  ( ( 0  e.  CC  /\  x  e.  CC )  ->  ( 0 D x )  =  ( abs `  ( 0  -  x
) ) )
20 abssub 11266 . . . . . . . . . . 11  |-  ( ( 0  e.  CC  /\  x  e.  CC )  ->  ( abs `  (
0  -  x ) )  =  ( abs `  ( x  -  0 ) ) )
2119, 20eqtrd 2229 . . . . . . . . . 10  |-  ( ( 0  e.  CC  /\  x  e.  CC )  ->  ( 0 D x )  =  ( abs `  ( x  -  0 ) ) )
2217, 21mpan 424 . . . . . . . . 9  |-  ( x  e.  CC  ->  (
0 D x )  =  ( abs `  (
x  -  0 ) ) )
23 subid1 8246 . . . . . . . . . 10  |-  ( x  e.  CC  ->  (
x  -  0 )  =  x )
2423fveq2d 5562 . . . . . . . . 9  |-  ( x  e.  CC  ->  ( abs `  ( x  - 
0 ) )  =  ( abs `  x
) )
2522, 24eqtrd 2229 . . . . . . . 8  |-  ( x  e.  CC  ->  (
0 D x )  =  ( abs `  x
) )
2625adantl 277 . . . . . . 7  |-  ( ( R  e.  RR*  /\  x  e.  CC )  ->  (
0 D x )  =  ( abs `  x
) )
2726breq1d 4043 . . . . . 6  |-  ( ( R  e.  RR*  /\  x  e.  CC )  ->  (
( 0 D x )  <_  R  <->  ( abs `  x )  <_  R
) )
2812, 16, 273bitr4d 220 . . . . 5  |-  ( ( R  e.  RR*  /\  x  e.  CC )  ->  (
( abs `  x
)  e.  ( 0 [,] R )  <->  ( 0 D x )  <_  R ) )
2928pm5.32da 452 . . . 4  |-  ( R  e.  RR*  ->  ( ( x  e.  CC  /\  ( abs `  x )  e.  ( 0 [,] R ) )  <->  ( x  e.  CC  /\  ( 0 D x )  <_  R ) ) )
304, 29bitrid 192 . . 3  |-  ( R  e.  RR*  ->  ( x  e.  ( `' abs " ( 0 [,] R
) )  <->  ( x  e.  CC  /\  ( 0 D x )  <_  R ) ) )
3130abbi2dv 2315 . 2  |-  ( R  e.  RR*  ->  ( `' abs " ( 0 [,] R ) )  =  { x  |  ( x  e.  CC  /\  ( 0 D x )  <_  R ) } )
32 df-rab 2484 . 2  |-  { x  e.  CC  |  ( 0 D x )  <_  R }  =  {
x  |  ( x  e.  CC  /\  (
0 D x )  <_  R ) }
3331, 32eqtr4di 2247 1  |-  ( R  e.  RR*  ->  ( `' abs " ( 0 [,] R ) )  =  { x  e.  CC  |  ( 0 D x )  <_  R } )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105    /\ w3a 980    = wceq 1364    e. wcel 2167   {cab 2182   {crab 2479   class class class wbr 4033   `'ccnv 4662   "cima 4666    o. ccom 4667    Fn wfn 5253   -->wf 5254   ` cfv 5258  (class class class)co 5922   CCcc 7877   RRcr 7878   0cc0 7879   RR*cxr 8060    <_ cle 8062    - cmin 8197   [,]cicc 9966   abscabs 11162
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-13 2169  ax-14 2170  ax-ext 2178  ax-coll 4148  ax-sep 4151  ax-nul 4159  ax-pow 4207  ax-pr 4242  ax-un 4468  ax-setind 4573  ax-iinf 4624  ax-cnex 7970  ax-resscn 7971  ax-1cn 7972  ax-1re 7973  ax-icn 7974  ax-addcl 7975  ax-addrcl 7976  ax-mulcl 7977  ax-mulrcl 7978  ax-addcom 7979  ax-mulcom 7980  ax-addass 7981  ax-mulass 7982  ax-distr 7983  ax-i2m1 7984  ax-0lt1 7985  ax-1rid 7986  ax-0id 7987  ax-rnegex 7988  ax-precex 7989  ax-cnre 7990  ax-pre-ltirr 7991  ax-pre-ltwlin 7992  ax-pre-lttrn 7993  ax-pre-apti 7994  ax-pre-ltadd 7995  ax-pre-mulgt0 7996  ax-pre-mulext 7997  ax-arch 7998  ax-caucvg 7999
This theorem depends on definitions:  df-bi 117  df-dc 836  df-3or 981  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1475  df-sb 1777  df-eu 2048  df-mo 2049  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ne 2368  df-nel 2463  df-ral 2480  df-rex 2481  df-reu 2482  df-rmo 2483  df-rab 2484  df-v 2765  df-sbc 2990  df-csb 3085  df-dif 3159  df-un 3161  df-in 3163  df-ss 3170  df-nul 3451  df-if 3562  df-pw 3607  df-sn 3628  df-pr 3629  df-op 3631  df-uni 3840  df-int 3875  df-iun 3918  df-br 4034  df-opab 4095  df-mpt 4096  df-tr 4132  df-id 4328  df-po 4331  df-iso 4332  df-iord 4401  df-on 4403  df-ilim 4404  df-suc 4406  df-iom 4627  df-xp 4669  df-rel 4670  df-cnv 4671  df-co 4672  df-dm 4673  df-rn 4674  df-res 4675  df-ima 4676  df-iota 5219  df-fun 5260  df-fn 5261  df-f 5262  df-f1 5263  df-fo 5264  df-f1o 5265  df-fv 5266  df-riota 5877  df-ov 5925  df-oprab 5926  df-mpo 5927  df-1st 6198  df-2nd 6199  df-recs 6363  df-frec 6449  df-pnf 8063  df-mnf 8064  df-xr 8065  df-ltxr 8066  df-le 8067  df-sub 8199  df-neg 8200  df-reap 8602  df-ap 8609  df-div 8700  df-inn 8991  df-2 9049  df-3 9050  df-4 9051  df-n0 9250  df-z 9327  df-uz 9602  df-rp 9729  df-icc 9970  df-seqfrec 10540  df-exp 10631  df-cj 11007  df-re 11008  df-im 11009  df-rsqrt 11163  df-abs 11164
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator