ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  add4 Unicode version

Theorem add4 8268
Description: Rearrangement of 4 terms in a sum. (Contributed by NM, 13-Nov-1999.) (Proof shortened by Andrew Salmon, 22-Oct-2011.)
Assertion
Ref Expression
add4  |-  ( ( ( A  e.  CC  /\  B  e.  CC )  /\  ( C  e.  CC  /\  D  e.  CC ) )  -> 
( ( A  +  B )  +  ( C  +  D ) )  =  ( ( A  +  C )  +  ( B  +  D ) ) )

Proof of Theorem add4
StepHypRef Expression
1 add12 8265 . . . . 5  |-  ( ( B  e.  CC  /\  C  e.  CC  /\  D  e.  CC )  ->  ( B  +  ( C  +  D ) )  =  ( C  +  ( B  +  D ) ) )
213expb 1207 . . . 4  |-  ( ( B  e.  CC  /\  ( C  e.  CC  /\  D  e.  CC ) )  ->  ( B  +  ( C  +  D ) )  =  ( C  +  ( B  +  D ) ) )
32oveq2d 5983 . . 3  |-  ( ( B  e.  CC  /\  ( C  e.  CC  /\  D  e.  CC ) )  ->  ( A  +  ( B  +  ( C  +  D
) ) )  =  ( A  +  ( C  +  ( B  +  D ) ) ) )
43adantll 476 . 2  |-  ( ( ( A  e.  CC  /\  B  e.  CC )  /\  ( C  e.  CC  /\  D  e.  CC ) )  -> 
( A  +  ( B  +  ( C  +  D ) ) )  =  ( A  +  ( C  +  ( B  +  D
) ) ) )
5 addcl 8085 . . 3  |-  ( ( C  e.  CC  /\  D  e.  CC )  ->  ( C  +  D
)  e.  CC )
6 addass 8090 . . . 4  |-  ( ( A  e.  CC  /\  B  e.  CC  /\  ( C  +  D )  e.  CC )  ->  (
( A  +  B
)  +  ( C  +  D ) )  =  ( A  +  ( B  +  ( C  +  D )
) ) )
763expa 1206 . . 3  |-  ( ( ( A  e.  CC  /\  B  e.  CC )  /\  ( C  +  D )  e.  CC )  ->  ( ( A  +  B )  +  ( C  +  D
) )  =  ( A  +  ( B  +  ( C  +  D ) ) ) )
85, 7sylan2 286 . 2  |-  ( ( ( A  e.  CC  /\  B  e.  CC )  /\  ( C  e.  CC  /\  D  e.  CC ) )  -> 
( ( A  +  B )  +  ( C  +  D ) )  =  ( A  +  ( B  +  ( C  +  D
) ) ) )
9 addcl 8085 . . . 4  |-  ( ( B  e.  CC  /\  D  e.  CC )  ->  ( B  +  D
)  e.  CC )
10 addass 8090 . . . . 5  |-  ( ( A  e.  CC  /\  C  e.  CC  /\  ( B  +  D )  e.  CC )  ->  (
( A  +  C
)  +  ( B  +  D ) )  =  ( A  +  ( C  +  ( B  +  D )
) ) )
11103expa 1206 . . . 4  |-  ( ( ( A  e.  CC  /\  C  e.  CC )  /\  ( B  +  D )  e.  CC )  ->  ( ( A  +  C )  +  ( B  +  D
) )  =  ( A  +  ( C  +  ( B  +  D ) ) ) )
129, 11sylan2 286 . . 3  |-  ( ( ( A  e.  CC  /\  C  e.  CC )  /\  ( B  e.  CC  /\  D  e.  CC ) )  -> 
( ( A  +  C )  +  ( B  +  D ) )  =  ( A  +  ( C  +  ( B  +  D
) ) ) )
1312an4s 588 . 2  |-  ( ( ( A  e.  CC  /\  B  e.  CC )  /\  ( C  e.  CC  /\  D  e.  CC ) )  -> 
( ( A  +  C )  +  ( B  +  D ) )  =  ( A  +  ( C  +  ( B  +  D
) ) ) )
144, 8, 133eqtr4d 2250 1  |-  ( ( ( A  e.  CC  /\  B  e.  CC )  /\  ( C  e.  CC  /\  D  e.  CC ) )  -> 
( ( A  +  B )  +  ( C  +  D ) )  =  ( ( A  +  C )  +  ( B  +  D ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    = wceq 1373    e. wcel 2178  (class class class)co 5967   CCcc 7958    + caddc 7963
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-ext 2189  ax-addcl 8056  ax-addcom 8060  ax-addass 8062
This theorem depends on definitions:  df-bi 117  df-3an 983  df-tru 1376  df-nf 1485  df-sb 1787  df-clab 2194  df-cleq 2200  df-clel 2203  df-nfc 2339  df-rex 2492  df-v 2778  df-un 3178  df-sn 3649  df-pr 3650  df-op 3652  df-uni 3865  df-br 4060  df-iota 5251  df-fv 5298  df-ov 5970
This theorem is referenced by:  add42  8269  add4i  8272  add4d  8276  3dvds2dec  12292  opoe  12321  ptolemy  15411
  Copyright terms: Public domain W3C validator