ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ancom2s Unicode version

Theorem ancom2s 566
Description: Inference commuting a nested conjunction in antecedent. (Contributed by NM, 24-May-2006.) (Proof shortened by Wolf Lammen, 24-Nov-2012.)
Hypothesis
Ref Expression
an12s.1  |-  ( (
ph  /\  ( ps  /\ 
ch ) )  ->  th )
Assertion
Ref Expression
ancom2s  |-  ( (
ph  /\  ( ch  /\ 
ps ) )  ->  th )

Proof of Theorem ancom2s
StepHypRef Expression
1 pm3.22 265 . 2  |-  ( ( ch  /\  ps )  ->  ( ps  /\  ch ) )
2 an12s.1 . 2  |-  ( (
ph  /\  ( ps  /\ 
ch ) )  ->  th )
31, 2sylan2 286 1  |-  ( (
ph  /\  ( ch  /\ 
ps ) )  ->  th )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108
This theorem is referenced by:  an42s  591  ordsuc  4652  xpexr2m  5166  f1elima  5890  f1imaeq  5892  isosolem  5941  caovlem2d  6189  2ndconst  6358  isotilem  7161  prarloclem4  7673  mulsub  8535  leltadd  8582  eqord1  8618  divmul24ap  8851  fprodseq  12080  grpidpropdg  13393  cmnpropd  13818  unitpropdg  14097  blcomps  15055  blcom  15056  dvmptfsum  15384  cxple  15576  cxple3  15580  uhgr2edg  15989
  Copyright terms: Public domain W3C validator