ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ancom2s Unicode version

Theorem ancom2s 566
Description: Inference commuting a nested conjunction in antecedent. (Contributed by NM, 24-May-2006.) (Proof shortened by Wolf Lammen, 24-Nov-2012.)
Hypothesis
Ref Expression
an12s.1  |-  ( (
ph  /\  ( ps  /\ 
ch ) )  ->  th )
Assertion
Ref Expression
ancom2s  |-  ( (
ph  /\  ( ch  /\ 
ps ) )  ->  th )

Proof of Theorem ancom2s
StepHypRef Expression
1 pm3.22 265 . 2  |-  ( ( ch  /\  ps )  ->  ( ps  /\  ch ) )
2 an12s.1 . 2  |-  ( (
ph  /\  ( ps  /\ 
ch ) )  ->  th )
31, 2sylan2 286 1  |-  ( (
ph  /\  ( ch  /\ 
ps ) )  ->  th )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108
This theorem is referenced by:  an42s  589  ordsuc  4596  xpexr2m  5108  f1elima  5817  f1imaeq  5819  isosolem  5868  caovlem2d  6113  2ndconst  6277  isotilem  7067  prarloclem4  7560  mulsub  8422  leltadd  8468  eqord1  8504  divmul24ap  8737  fprodseq  11729  grpidpropdg  12960  cmnpropd  13368  unitpropdg  13647  blcomps  14575  blcom  14576  dvmptfsum  14904  cxple  15092  cxple3  15096
  Copyright terms: Public domain W3C validator