ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ancom2s Unicode version

Theorem ancom2s 566
Description: Inference commuting a nested conjunction in antecedent. (Contributed by NM, 24-May-2006.) (Proof shortened by Wolf Lammen, 24-Nov-2012.)
Hypothesis
Ref Expression
an12s.1  |-  ( (
ph  /\  ( ps  /\ 
ch ) )  ->  th )
Assertion
Ref Expression
ancom2s  |-  ( (
ph  /\  ( ch  /\ 
ps ) )  ->  th )

Proof of Theorem ancom2s
StepHypRef Expression
1 pm3.22 265 . 2  |-  ( ( ch  /\  ps )  ->  ( ps  /\  ch ) )
2 an12s.1 . 2  |-  ( (
ph  /\  ( ps  /\ 
ch ) )  ->  th )
31, 2sylan2 286 1  |-  ( (
ph  /\  ( ch  /\ 
ps ) )  ->  th )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108
This theorem is referenced by:  an42s  589  ordsuc  4599  xpexr2m  5111  f1elima  5820  f1imaeq  5822  isosolem  5871  caovlem2d  6116  2ndconst  6280  isotilem  7072  prarloclem4  7565  mulsub  8427  leltadd  8474  eqord1  8510  divmul24ap  8743  fprodseq  11748  grpidpropdg  13017  cmnpropd  13425  unitpropdg  13704  blcomps  14632  blcom  14633  dvmptfsum  14961  cxple  15153  cxple3  15157
  Copyright terms: Public domain W3C validator