ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ancom2s Unicode version

Theorem ancom2s 566
Description: Inference commuting a nested conjunction in antecedent. (Contributed by NM, 24-May-2006.) (Proof shortened by Wolf Lammen, 24-Nov-2012.)
Hypothesis
Ref Expression
an12s.1  |-  ( (
ph  /\  ( ps  /\ 
ch ) )  ->  th )
Assertion
Ref Expression
ancom2s  |-  ( (
ph  /\  ( ch  /\ 
ps ) )  ->  th )

Proof of Theorem ancom2s
StepHypRef Expression
1 pm3.22 265 . 2  |-  ( ( ch  /\  ps )  ->  ( ps  /\  ch ) )
2 an12s.1 . 2  |-  ( (
ph  /\  ( ps  /\ 
ch ) )  ->  th )
31, 2sylan2 286 1  |-  ( (
ph  /\  ( ch  /\ 
ps ) )  ->  th )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108
This theorem is referenced by:  an42s  589  ordsuc  4615  xpexr2m  5129  f1elima  5849  f1imaeq  5851  isosolem  5900  caovlem2d  6146  2ndconst  6315  isotilem  7115  prarloclem4  7618  mulsub  8480  leltadd  8527  eqord1  8563  divmul24ap  8796  fprodseq  11938  grpidpropdg  13250  cmnpropd  13675  unitpropdg  13954  blcomps  14912  blcom  14913  dvmptfsum  15241  cxple  15433  cxple3  15437
  Copyright terms: Public domain W3C validator