| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > ancom2s | Unicode version | ||
| Description: Inference commuting a nested conjunction in antecedent. (Contributed by NM, 24-May-2006.) (Proof shortened by Wolf Lammen, 24-Nov-2012.) |
| Ref | Expression |
|---|---|
| an12s.1 |
|
| Ref | Expression |
|---|---|
| ancom2s |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | pm3.22 265 |
. 2
| |
| 2 | an12s.1 |
. 2
| |
| 3 | 1, 2 | sylan2 286 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 |
| This theorem is referenced by: an42s 589 ordsuc 4600 xpexr2m 5112 f1elima 5823 f1imaeq 5825 isosolem 5874 caovlem2d 6120 2ndconst 6289 isotilem 7081 prarloclem4 7584 mulsub 8446 leltadd 8493 eqord1 8529 divmul24ap 8762 fprodseq 11767 grpidpropdg 13078 cmnpropd 13503 unitpropdg 13782 blcomps 14718 blcom 14719 dvmptfsum 15047 cxple 15239 cxple3 15243 |
| Copyright terms: Public domain | W3C validator |