| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > ancom2s | Unicode version | ||
| Description: Inference commuting a nested conjunction in antecedent. (Contributed by NM, 24-May-2006.) (Proof shortened by Wolf Lammen, 24-Nov-2012.) |
| Ref | Expression |
|---|---|
| an12s.1 |
|
| Ref | Expression |
|---|---|
| ancom2s |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | pm3.22 265 |
. 2
| |
| 2 | an12s.1 |
. 2
| |
| 3 | 1, 2 | sylan2 286 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 |
| This theorem is referenced by: an42s 591 ordsuc 4652 xpexr2m 5166 f1elima 5890 f1imaeq 5892 isosolem 5941 caovlem2d 6189 2ndconst 6358 isotilem 7161 prarloclem4 7673 mulsub 8535 leltadd 8582 eqord1 8618 divmul24ap 8851 fprodseq 12080 grpidpropdg 13393 cmnpropd 13818 unitpropdg 14097 blcomps 15055 blcom 15056 dvmptfsum 15384 cxple 15576 cxple3 15580 uhgr2edg 15989 |
| Copyright terms: Public domain | W3C validator |