Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > ancom2s | Unicode version |
Description: Inference commuting a nested conjunction in antecedent. (Contributed by NM, 24-May-2006.) (Proof shortened by Wolf Lammen, 24-Nov-2012.) |
Ref | Expression |
---|---|
an12s.1 |
Ref | Expression |
---|---|
ancom2s |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | pm3.22 263 | . 2 | |
2 | an12s.1 | . 2 | |
3 | 1, 2 | sylan2 284 | 1 |
Colors of variables: wff set class |
Syntax hints: wi 4 wa 103 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 |
This theorem is referenced by: an42s 584 ordsuc 4547 xpexr2m 5052 f1elima 5752 f1imaeq 5754 isosolem 5803 caovlem2d 6045 2ndconst 6201 isotilem 6983 prarloclem4 7460 mulsub 8320 leltadd 8366 eqord1 8402 divmul24ap 8633 fprodseq 11546 grpidpropdg 12628 blcomps 13190 blcom 13191 cxple 13631 cxple3 13635 |
Copyright terms: Public domain | W3C validator |