Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > ancom2s | Unicode version |
Description: Inference commuting a nested conjunction in antecedent. (Contributed by NM, 24-May-2006.) (Proof shortened by Wolf Lammen, 24-Nov-2012.) |
Ref | Expression |
---|---|
an12s.1 |
Ref | Expression |
---|---|
ancom2s |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | pm3.22 263 | . 2 | |
2 | an12s.1 | . 2 | |
3 | 1, 2 | sylan2 284 | 1 |
Colors of variables: wff set class |
Syntax hints: wi 4 wa 103 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 |
This theorem is referenced by: an42s 579 ordsuc 4520 xpexr2m 5024 f1elima 5718 f1imaeq 5720 isosolem 5769 caovlem2d 6007 2ndconst 6163 isotilem 6942 prarloclem4 7401 mulsub 8259 leltadd 8305 eqord1 8341 divmul24ap 8572 fprodseq 11462 blcomps 12756 blcom 12757 cxple 13197 cxple3 13201 |
Copyright terms: Public domain | W3C validator |