Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > ordsuc | Unicode version |
Description: The successor of an ordinal class is ordinal. (Contributed by NM, 3-Apr-1995.) (Constructive proof by Mario Carneiro and Jim Kingdon, 20-Jul-2019.) |
Ref | Expression |
---|---|
ordsuc |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ordsucim 4484 | . 2 | |
2 | en2lp 4538 | . . . . . . . . . 10 | |
3 | eleq1 2233 | . . . . . . . . . . . . 13 | |
4 | 3 | biimpac 296 | . . . . . . . . . . . 12 |
5 | 4 | anim2i 340 | . . . . . . . . . . 11 |
6 | 5 | expr 373 | . . . . . . . . . 10 |
7 | 2, 6 | mtoi 659 | . . . . . . . . 9 |
8 | 7 | adantl 275 | . . . . . . . 8 |
9 | elelsuc 4394 | . . . . . . . . . . . . . . 15 | |
10 | 9 | adantr 274 | . . . . . . . . . . . . . 14 |
11 | ordelss 4364 | . . . . . . . . . . . . . 14 | |
12 | 10, 11 | sylan2 284 | . . . . . . . . . . . . 13 |
13 | 12 | sseld 3146 | . . . . . . . . . . . 12 |
14 | 13 | expr 373 | . . . . . . . . . . 11 |
15 | 14 | pm2.43d 50 | . . . . . . . . . 10 |
16 | 15 | impr 377 | . . . . . . . . 9 |
17 | elsuci 4388 | . . . . . . . . 9 | |
18 | 16, 17 | syl 14 | . . . . . . . 8 |
19 | 8, 18 | ecased 1344 | . . . . . . 7 |
20 | 19 | ancom2s 561 | . . . . . 6 |
21 | 20 | ex 114 | . . . . 5 |
22 | 21 | alrimivv 1868 | . . . 4 |
23 | dftr2 4089 | . . . 4 | |
24 | 22, 23 | sylibr 133 | . . 3 |
25 | sssucid 4400 | . . . 4 | |
26 | trssord 4365 | . . . 4 | |
27 | 25, 26 | mp3an2 1320 | . . 3 |
28 | 24, 27 | mpancom 420 | . 2 |
29 | 1, 28 | impbii 125 | 1 |
Colors of variables: wff set class |
Syntax hints: wn 3 wi 4 wa 103 wb 104 wo 703 wal 1346 wceq 1348 wcel 2141 wss 3121 wtr 4087 word 4347 csuc 4350 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 609 ax-in2 610 ax-io 704 ax-5 1440 ax-7 1441 ax-gen 1442 ax-ie1 1486 ax-ie2 1487 ax-8 1497 ax-10 1498 ax-11 1499 ax-i12 1500 ax-bndl 1502 ax-4 1503 ax-17 1519 ax-i9 1523 ax-ial 1527 ax-i5r 1528 ax-ext 2152 ax-setind 4521 |
This theorem depends on definitions: df-bi 116 df-3an 975 df-tru 1351 df-nf 1454 df-sb 1756 df-clab 2157 df-cleq 2163 df-clel 2166 df-nfc 2301 df-ral 2453 df-rex 2454 df-v 2732 df-dif 3123 df-un 3125 df-in 3127 df-ss 3134 df-sn 3589 df-pr 3590 df-uni 3797 df-tr 4088 df-iord 4351 df-suc 4356 |
This theorem is referenced by: nlimsucg 4550 ordpwsucss 4551 |
Copyright terms: Public domain | W3C validator |