ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ordsuc Unicode version

Theorem ordsuc 4547
Description: The successor of an ordinal class is ordinal. (Contributed by NM, 3-Apr-1995.) (Constructive proof by Mario Carneiro and Jim Kingdon, 20-Jul-2019.)
Assertion
Ref Expression
ordsuc  |-  ( Ord 
A  <->  Ord  suc  A )

Proof of Theorem ordsuc
Dummy variables  x  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ordsucim 4484 . 2  |-  ( Ord 
A  ->  Ord  suc  A
)
2 en2lp 4538 . . . . . . . . . 10  |-  -.  (
x  e.  A  /\  A  e.  x )
3 eleq1 2233 . . . . . . . . . . . . 13  |-  ( y  =  A  ->  (
y  e.  x  <->  A  e.  x ) )
43biimpac 296 . . . . . . . . . . . 12  |-  ( ( y  e.  x  /\  y  =  A )  ->  A  e.  x )
54anim2i 340 . . . . . . . . . . 11  |-  ( ( x  e.  A  /\  ( y  e.  x  /\  y  =  A
) )  ->  (
x  e.  A  /\  A  e.  x )
)
65expr 373 . . . . . . . . . 10  |-  ( ( x  e.  A  /\  y  e.  x )  ->  ( y  =  A  ->  ( x  e.  A  /\  A  e.  x ) ) )
72, 6mtoi 659 . . . . . . . . 9  |-  ( ( x  e.  A  /\  y  e.  x )  ->  -.  y  =  A )
87adantl 275 . . . . . . . 8  |-  ( ( Ord  suc  A  /\  ( x  e.  A  /\  y  e.  x
) )  ->  -.  y  =  A )
9 elelsuc 4394 . . . . . . . . . . . . . . 15  |-  ( x  e.  A  ->  x  e.  suc  A )
109adantr 274 . . . . . . . . . . . . . 14  |-  ( ( x  e.  A  /\  y  e.  x )  ->  x  e.  suc  A
)
11 ordelss 4364 . . . . . . . . . . . . . 14  |-  ( ( Ord  suc  A  /\  x  e.  suc  A )  ->  x  C_  suc  A )
1210, 11sylan2 284 . . . . . . . . . . . . 13  |-  ( ( Ord  suc  A  /\  ( x  e.  A  /\  y  e.  x
) )  ->  x  C_ 
suc  A )
1312sseld 3146 . . . . . . . . . . . 12  |-  ( ( Ord  suc  A  /\  ( x  e.  A  /\  y  e.  x
) )  ->  (
y  e.  x  -> 
y  e.  suc  A
) )
1413expr 373 . . . . . . . . . . 11  |-  ( ( Ord  suc  A  /\  x  e.  A )  ->  ( y  e.  x  ->  ( y  e.  x  ->  y  e.  suc  A
) ) )
1514pm2.43d 50 . . . . . . . . . 10  |-  ( ( Ord  suc  A  /\  x  e.  A )  ->  ( y  e.  x  ->  y  e.  suc  A
) )
1615impr 377 . . . . . . . . 9  |-  ( ( Ord  suc  A  /\  ( x  e.  A  /\  y  e.  x
) )  ->  y  e.  suc  A )
17 elsuci 4388 . . . . . . . . 9  |-  ( y  e.  suc  A  -> 
( y  e.  A  \/  y  =  A
) )
1816, 17syl 14 . . . . . . . 8  |-  ( ( Ord  suc  A  /\  ( x  e.  A  /\  y  e.  x
) )  ->  (
y  e.  A  \/  y  =  A )
)
198, 18ecased 1344 . . . . . . 7  |-  ( ( Ord  suc  A  /\  ( x  e.  A  /\  y  e.  x
) )  ->  y  e.  A )
2019ancom2s 561 . . . . . 6  |-  ( ( Ord  suc  A  /\  ( y  e.  x  /\  x  e.  A
) )  ->  y  e.  A )
2120ex 114 . . . . 5  |-  ( Ord 
suc  A  ->  ( ( y  e.  x  /\  x  e.  A )  ->  y  e.  A ) )
2221alrimivv 1868 . . . 4  |-  ( Ord 
suc  A  ->  A. y A. x ( ( y  e.  x  /\  x  e.  A )  ->  y  e.  A ) )
23 dftr2 4089 . . . 4  |-  ( Tr  A  <->  A. y A. x
( ( y  e.  x  /\  x  e.  A )  ->  y  e.  A ) )
2422, 23sylibr 133 . . 3  |-  ( Ord 
suc  A  ->  Tr  A
)
25 sssucid 4400 . . . 4  |-  A  C_  suc  A
26 trssord 4365 . . . 4  |-  ( ( Tr  A  /\  A  C_ 
suc  A  /\  Ord  suc  A )  ->  Ord  A )
2725, 26mp3an2 1320 . . 3  |-  ( ( Tr  A  /\  Ord  suc 
A )  ->  Ord  A )
2824, 27mpancom 420 . 2  |-  ( Ord 
suc  A  ->  Ord  A
)
291, 28impbii 125 1  |-  ( Ord 
A  <->  Ord  suc  A )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 103    <-> wb 104    \/ wo 703   A.wal 1346    = wceq 1348    e. wcel 2141    C_ wss 3121   Tr wtr 4087   Ord word 4347   suc csuc 4350
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 609  ax-in2 610  ax-io 704  ax-5 1440  ax-7 1441  ax-gen 1442  ax-ie1 1486  ax-ie2 1487  ax-8 1497  ax-10 1498  ax-11 1499  ax-i12 1500  ax-bndl 1502  ax-4 1503  ax-17 1519  ax-i9 1523  ax-ial 1527  ax-i5r 1528  ax-ext 2152  ax-setind 4521
This theorem depends on definitions:  df-bi 116  df-3an 975  df-tru 1351  df-nf 1454  df-sb 1756  df-clab 2157  df-cleq 2163  df-clel 2166  df-nfc 2301  df-ral 2453  df-rex 2454  df-v 2732  df-dif 3123  df-un 3125  df-in 3127  df-ss 3134  df-sn 3589  df-pr 3590  df-uni 3797  df-tr 4088  df-iord 4351  df-suc 4356
This theorem is referenced by:  nlimsucg  4550  ordpwsucss  4551
  Copyright terms: Public domain W3C validator