ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ordsuc Unicode version

Theorem ordsuc 4599
Description: The successor of an ordinal class is ordinal. (Contributed by NM, 3-Apr-1995.) (Constructive proof by Mario Carneiro and Jim Kingdon, 20-Jul-2019.)
Assertion
Ref Expression
ordsuc  |-  ( Ord 
A  <->  Ord  suc  A )

Proof of Theorem ordsuc
Dummy variables  x  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ordsucim 4536 . 2  |-  ( Ord 
A  ->  Ord  suc  A
)
2 en2lp 4590 . . . . . . . . . 10  |-  -.  (
x  e.  A  /\  A  e.  x )
3 eleq1 2259 . . . . . . . . . . . . 13  |-  ( y  =  A  ->  (
y  e.  x  <->  A  e.  x ) )
43biimpac 298 . . . . . . . . . . . 12  |-  ( ( y  e.  x  /\  y  =  A )  ->  A  e.  x )
54anim2i 342 . . . . . . . . . . 11  |-  ( ( x  e.  A  /\  ( y  e.  x  /\  y  =  A
) )  ->  (
x  e.  A  /\  A  e.  x )
)
65expr 375 . . . . . . . . . 10  |-  ( ( x  e.  A  /\  y  e.  x )  ->  ( y  =  A  ->  ( x  e.  A  /\  A  e.  x ) ) )
72, 6mtoi 665 . . . . . . . . 9  |-  ( ( x  e.  A  /\  y  e.  x )  ->  -.  y  =  A )
87adantl 277 . . . . . . . 8  |-  ( ( Ord  suc  A  /\  ( x  e.  A  /\  y  e.  x
) )  ->  -.  y  =  A )
9 elelsuc 4444 . . . . . . . . . . . . . . 15  |-  ( x  e.  A  ->  x  e.  suc  A )
109adantr 276 . . . . . . . . . . . . . 14  |-  ( ( x  e.  A  /\  y  e.  x )  ->  x  e.  suc  A
)
11 ordelss 4414 . . . . . . . . . . . . . 14  |-  ( ( Ord  suc  A  /\  x  e.  suc  A )  ->  x  C_  suc  A )
1210, 11sylan2 286 . . . . . . . . . . . . 13  |-  ( ( Ord  suc  A  /\  ( x  e.  A  /\  y  e.  x
) )  ->  x  C_ 
suc  A )
1312sseld 3182 . . . . . . . . . . . 12  |-  ( ( Ord  suc  A  /\  ( x  e.  A  /\  y  e.  x
) )  ->  (
y  e.  x  -> 
y  e.  suc  A
) )
1413expr 375 . . . . . . . . . . 11  |-  ( ( Ord  suc  A  /\  x  e.  A )  ->  ( y  e.  x  ->  ( y  e.  x  ->  y  e.  suc  A
) ) )
1514pm2.43d 50 . . . . . . . . . 10  |-  ( ( Ord  suc  A  /\  x  e.  A )  ->  ( y  e.  x  ->  y  e.  suc  A
) )
1615impr 379 . . . . . . . . 9  |-  ( ( Ord  suc  A  /\  ( x  e.  A  /\  y  e.  x
) )  ->  y  e.  suc  A )
17 elsuci 4438 . . . . . . . . 9  |-  ( y  e.  suc  A  -> 
( y  e.  A  \/  y  =  A
) )
1816, 17syl 14 . . . . . . . 8  |-  ( ( Ord  suc  A  /\  ( x  e.  A  /\  y  e.  x
) )  ->  (
y  e.  A  \/  y  =  A )
)
198, 18ecased 1360 . . . . . . 7  |-  ( ( Ord  suc  A  /\  ( x  e.  A  /\  y  e.  x
) )  ->  y  e.  A )
2019ancom2s 566 . . . . . 6  |-  ( ( Ord  suc  A  /\  ( y  e.  x  /\  x  e.  A
) )  ->  y  e.  A )
2120ex 115 . . . . 5  |-  ( Ord 
suc  A  ->  ( ( y  e.  x  /\  x  e.  A )  ->  y  e.  A ) )
2221alrimivv 1889 . . . 4  |-  ( Ord 
suc  A  ->  A. y A. x ( ( y  e.  x  /\  x  e.  A )  ->  y  e.  A ) )
23 dftr2 4133 . . . 4  |-  ( Tr  A  <->  A. y A. x
( ( y  e.  x  /\  x  e.  A )  ->  y  e.  A ) )
2422, 23sylibr 134 . . 3  |-  ( Ord 
suc  A  ->  Tr  A
)
25 sssucid 4450 . . . 4  |-  A  C_  suc  A
26 trssord 4415 . . . 4  |-  ( ( Tr  A  /\  A  C_ 
suc  A  /\  Ord  suc  A )  ->  Ord  A )
2725, 26mp3an2 1336 . . 3  |-  ( ( Tr  A  /\  Ord  suc 
A )  ->  Ord  A )
2824, 27mpancom 422 . 2  |-  ( Ord 
suc  A  ->  Ord  A
)
291, 28impbii 126 1  |-  ( Ord 
A  <->  Ord  suc  A )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 104    <-> wb 105    \/ wo 709   A.wal 1362    = wceq 1364    e. wcel 2167    C_ wss 3157   Tr wtr 4131   Ord word 4397   suc csuc 4400
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-ext 2178  ax-setind 4573
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-nf 1475  df-sb 1777  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ral 2480  df-rex 2481  df-v 2765  df-dif 3159  df-un 3161  df-in 3163  df-ss 3170  df-sn 3628  df-pr 3629  df-uni 3840  df-tr 4132  df-iord 4401  df-suc 4406
This theorem is referenced by:  nlimsucg  4602  ordpwsucss  4603
  Copyright terms: Public domain W3C validator