| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > ordsuc | Unicode version | ||
| Description: The successor of an ordinal class is ordinal. (Contributed by NM, 3-Apr-1995.) (Constructive proof by Mario Carneiro and Jim Kingdon, 20-Jul-2019.) |
| Ref | Expression |
|---|---|
| ordsuc |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ordsucim 4566 |
. 2
| |
| 2 | en2lp 4620 |
. . . . . . . . . 10
| |
| 3 | eleq1 2270 |
. . . . . . . . . . . . 13
| |
| 4 | 3 | biimpac 298 |
. . . . . . . . . . . 12
|
| 5 | 4 | anim2i 342 |
. . . . . . . . . . 11
|
| 6 | 5 | expr 375 |
. . . . . . . . . 10
|
| 7 | 2, 6 | mtoi 666 |
. . . . . . . . 9
|
| 8 | 7 | adantl 277 |
. . . . . . . 8
|
| 9 | elelsuc 4474 |
. . . . . . . . . . . . . . 15
| |
| 10 | 9 | adantr 276 |
. . . . . . . . . . . . . 14
|
| 11 | ordelss 4444 |
. . . . . . . . . . . . . 14
| |
| 12 | 10, 11 | sylan2 286 |
. . . . . . . . . . . . 13
|
| 13 | 12 | sseld 3200 |
. . . . . . . . . . . 12
|
| 14 | 13 | expr 375 |
. . . . . . . . . . 11
|
| 15 | 14 | pm2.43d 50 |
. . . . . . . . . 10
|
| 16 | 15 | impr 379 |
. . . . . . . . 9
|
| 17 | elsuci 4468 |
. . . . . . . . 9
| |
| 18 | 16, 17 | syl 14 |
. . . . . . . 8
|
| 19 | 8, 18 | ecased 1362 |
. . . . . . 7
|
| 20 | 19 | ancom2s 566 |
. . . . . 6
|
| 21 | 20 | ex 115 |
. . . . 5
|
| 22 | 21 | alrimivv 1899 |
. . . 4
|
| 23 | dftr2 4160 |
. . . 4
| |
| 24 | 22, 23 | sylibr 134 |
. . 3
|
| 25 | sssucid 4480 |
. . . 4
| |
| 26 | trssord 4445 |
. . . 4
| |
| 27 | 25, 26 | mp3an2 1338 |
. . 3
|
| 28 | 24, 27 | mpancom 422 |
. 2
|
| 29 | 1, 28 | impbii 126 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-ext 2189 ax-setind 4603 |
| This theorem depends on definitions: df-bi 117 df-3an 983 df-tru 1376 df-nf 1485 df-sb 1787 df-clab 2194 df-cleq 2200 df-clel 2203 df-nfc 2339 df-ral 2491 df-rex 2492 df-v 2778 df-dif 3176 df-un 3178 df-in 3180 df-ss 3187 df-sn 3649 df-pr 3650 df-uni 3865 df-tr 4159 df-iord 4431 df-suc 4436 |
| This theorem is referenced by: nlimsucg 4632 ordpwsucss 4633 |
| Copyright terms: Public domain | W3C validator |