| Intuitionistic Logic Explorer | 
      
      
      < Previous  
      Next >
      
       Nearby theorems  | 
  ||
| Mirrors > Home > ILE Home > Th. List > ordsuc | Unicode version | ||
| Description: The successor of an ordinal class is ordinal. (Contributed by NM, 3-Apr-1995.) (Constructive proof by Mario Carneiro and Jim Kingdon, 20-Jul-2019.) | 
| Ref | Expression | 
|---|---|
| ordsuc | 
 | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | ordsucim 4536 | 
. 2
 | |
| 2 | en2lp 4590 | 
. . . . . . . . . 10
 | |
| 3 | eleq1 2259 | 
. . . . . . . . . . . . 13
 | |
| 4 | 3 | biimpac 298 | 
. . . . . . . . . . . 12
 | 
| 5 | 4 | anim2i 342 | 
. . . . . . . . . . 11
 | 
| 6 | 5 | expr 375 | 
. . . . . . . . . 10
 | 
| 7 | 2, 6 | mtoi 665 | 
. . . . . . . . 9
 | 
| 8 | 7 | adantl 277 | 
. . . . . . . 8
 | 
| 9 | elelsuc 4444 | 
. . . . . . . . . . . . . . 15
 | |
| 10 | 9 | adantr 276 | 
. . . . . . . . . . . . . 14
 | 
| 11 | ordelss 4414 | 
. . . . . . . . . . . . . 14
 | |
| 12 | 10, 11 | sylan2 286 | 
. . . . . . . . . . . . 13
 | 
| 13 | 12 | sseld 3182 | 
. . . . . . . . . . . 12
 | 
| 14 | 13 | expr 375 | 
. . . . . . . . . . 11
 | 
| 15 | 14 | pm2.43d 50 | 
. . . . . . . . . 10
 | 
| 16 | 15 | impr 379 | 
. . . . . . . . 9
 | 
| 17 | elsuci 4438 | 
. . . . . . . . 9
 | |
| 18 | 16, 17 | syl 14 | 
. . . . . . . 8
 | 
| 19 | 8, 18 | ecased 1360 | 
. . . . . . 7
 | 
| 20 | 19 | ancom2s 566 | 
. . . . . 6
 | 
| 21 | 20 | ex 115 | 
. . . . 5
 | 
| 22 | 21 | alrimivv 1889 | 
. . . 4
 | 
| 23 | dftr2 4133 | 
. . . 4
 | |
| 24 | 22, 23 | sylibr 134 | 
. . 3
 | 
| 25 | sssucid 4450 | 
. . . 4
 | |
| 26 | trssord 4415 | 
. . . 4
 | |
| 27 | 25, 26 | mp3an2 1336 | 
. . 3
 | 
| 28 | 24, 27 | mpancom 422 | 
. 2
 | 
| 29 | 1, 28 | impbii 126 | 
1
 | 
| Colors of variables: wff set class | 
| Syntax hints:    | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-ext 2178 ax-setind 4573 | 
| This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-nf 1475 df-sb 1777 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-ral 2480 df-rex 2481 df-v 2765 df-dif 3159 df-un 3161 df-in 3163 df-ss 3170 df-sn 3628 df-pr 3629 df-uni 3840 df-tr 4132 df-iord 4401 df-suc 4406 | 
| This theorem is referenced by: nlimsucg 4602 ordpwsucss 4603 | 
| Copyright terms: Public domain | W3C validator |