ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  grpidpropdg Unicode version

Theorem grpidpropdg 12960
Description: If two structures have the same base set, and the values of their group (addition) operations are equal for all pairs of elements of the base set, they have the same identity element. (Contributed by Mario Carneiro, 27-Nov-2014.)
Hypotheses
Ref Expression
grpidpropd.1  |-  ( ph  ->  B  =  ( Base `  K ) )
grpidpropd.2  |-  ( ph  ->  B  =  ( Base `  L ) )
grpidproddg.k  |-  ( ph  ->  K  e.  V )
grpidproddg.l  |-  ( ph  ->  L  e.  W )
grpidpropd.3  |-  ( (
ph  /\  ( x  e.  B  /\  y  e.  B ) )  -> 
( x ( +g  `  K ) y )  =  ( x ( +g  `  L ) y ) )
Assertion
Ref Expression
grpidpropdg  |-  ( ph  ->  ( 0g `  K
)  =  ( 0g
`  L ) )
Distinct variable groups:    x, y, B   
x, K, y    ph, x, y    x, L, y
Allowed substitution hints:    V( x, y)    W( x, y)

Proof of Theorem grpidpropdg
Dummy variables  w  z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 grpidpropd.3 . . . . . . . . 9  |-  ( (
ph  /\  ( x  e.  B  /\  y  e.  B ) )  -> 
( x ( +g  `  K ) y )  =  ( x ( +g  `  L ) y ) )
21eqeq1d 2202 . . . . . . . 8  |-  ( (
ph  /\  ( x  e.  B  /\  y  e.  B ) )  -> 
( ( x ( +g  `  K ) y )  =  y  <-> 
( x ( +g  `  L ) y )  =  y ) )
31oveqrspc2v 5946 . . . . . . . . . . 11  |-  ( (
ph  /\  ( z  e.  B  /\  w  e.  B ) )  -> 
( z ( +g  `  K ) w )  =  ( z ( +g  `  L ) w ) )
43oveqrspc2v 5946 . . . . . . . . . 10  |-  ( (
ph  /\  ( y  e.  B  /\  x  e.  B ) )  -> 
( y ( +g  `  K ) x )  =  ( y ( +g  `  L ) x ) )
54ancom2s 566 . . . . . . . . 9  |-  ( (
ph  /\  ( x  e.  B  /\  y  e.  B ) )  -> 
( y ( +g  `  K ) x )  =  ( y ( +g  `  L ) x ) )
65eqeq1d 2202 . . . . . . . 8  |-  ( (
ph  /\  ( x  e.  B  /\  y  e.  B ) )  -> 
( ( y ( +g  `  K ) x )  =  y  <-> 
( y ( +g  `  L ) x )  =  y ) )
72, 6anbi12d 473 . . . . . . 7  |-  ( (
ph  /\  ( x  e.  B  /\  y  e.  B ) )  -> 
( ( ( x ( +g  `  K
) y )  =  y  /\  ( y ( +g  `  K
) x )  =  y )  <->  ( (
x ( +g  `  L
) y )  =  y  /\  ( y ( +g  `  L
) x )  =  y ) ) )
87anassrs 400 . . . . . 6  |-  ( ( ( ph  /\  x  e.  B )  /\  y  e.  B )  ->  (
( ( x ( +g  `  K ) y )  =  y  /\  ( y ( +g  `  K ) x )  =  y )  <->  ( ( x ( +g  `  L
) y )  =  y  /\  ( y ( +g  `  L
) x )  =  y ) ) )
98ralbidva 2490 . . . . 5  |-  ( (
ph  /\  x  e.  B )  ->  ( A. y  e.  B  ( ( x ( +g  `  K ) y )  =  y  /\  ( y ( +g  `  K ) x )  =  y )  <->  A. y  e.  B  ( ( x ( +g  `  L ) y )  =  y  /\  ( y ( +g  `  L ) x )  =  y ) ) )
109pm5.32da 452 . . . 4  |-  ( ph  ->  ( ( x  e.  B  /\  A. y  e.  B  ( (
x ( +g  `  K
) y )  =  y  /\  ( y ( +g  `  K
) x )  =  y ) )  <->  ( x  e.  B  /\  A. y  e.  B  ( (
x ( +g  `  L
) y )  =  y  /\  ( y ( +g  `  L
) x )  =  y ) ) ) )
11 grpidpropd.1 . . . . . 6  |-  ( ph  ->  B  =  ( Base `  K ) )
1211eleq2d 2263 . . . . 5  |-  ( ph  ->  ( x  e.  B  <->  x  e.  ( Base `  K
) ) )
1311raleqdv 2696 . . . . 5  |-  ( ph  ->  ( A. y  e.  B  ( ( x ( +g  `  K
) y )  =  y  /\  ( y ( +g  `  K
) x )  =  y )  <->  A. y  e.  ( Base `  K
) ( ( x ( +g  `  K
) y )  =  y  /\  ( y ( +g  `  K
) x )  =  y ) ) )
1412, 13anbi12d 473 . . . 4  |-  ( ph  ->  ( ( x  e.  B  /\  A. y  e.  B  ( (
x ( +g  `  K
) y )  =  y  /\  ( y ( +g  `  K
) x )  =  y ) )  <->  ( x  e.  ( Base `  K
)  /\  A. y  e.  ( Base `  K
) ( ( x ( +g  `  K
) y )  =  y  /\  ( y ( +g  `  K
) x )  =  y ) ) ) )
15 grpidpropd.2 . . . . . 6  |-  ( ph  ->  B  =  ( Base `  L ) )
1615eleq2d 2263 . . . . 5  |-  ( ph  ->  ( x  e.  B  <->  x  e.  ( Base `  L
) ) )
1715raleqdv 2696 . . . . 5  |-  ( ph  ->  ( A. y  e.  B  ( ( x ( +g  `  L
) y )  =  y  /\  ( y ( +g  `  L
) x )  =  y )  <->  A. y  e.  ( Base `  L
) ( ( x ( +g  `  L
) y )  =  y  /\  ( y ( +g  `  L
) x )  =  y ) ) )
1816, 17anbi12d 473 . . . 4  |-  ( ph  ->  ( ( x  e.  B  /\  A. y  e.  B  ( (
x ( +g  `  L
) y )  =  y  /\  ( y ( +g  `  L
) x )  =  y ) )  <->  ( x  e.  ( Base `  L
)  /\  A. y  e.  ( Base `  L
) ( ( x ( +g  `  L
) y )  =  y  /\  ( y ( +g  `  L
) x )  =  y ) ) ) )
1910, 14, 183bitr3d 218 . . 3  |-  ( ph  ->  ( ( x  e.  ( Base `  K
)  /\  A. y  e.  ( Base `  K
) ( ( x ( +g  `  K
) y )  =  y  /\  ( y ( +g  `  K
) x )  =  y ) )  <->  ( x  e.  ( Base `  L
)  /\  A. y  e.  ( Base `  L
) ( ( x ( +g  `  L
) y )  =  y  /\  ( y ( +g  `  L
) x )  =  y ) ) ) )
2019iotabidv 5238 . 2  |-  ( ph  ->  ( iota x ( x  e.  ( Base `  K )  /\  A. y  e.  ( Base `  K ) ( ( x ( +g  `  K
) y )  =  y  /\  ( y ( +g  `  K
) x )  =  y ) ) )  =  ( iota x
( x  e.  (
Base `  L )  /\  A. y  e.  (
Base `  L )
( ( x ( +g  `  L ) y )  =  y  /\  ( y ( +g  `  L ) x )  =  y ) ) ) )
21 grpidproddg.k . . 3  |-  ( ph  ->  K  e.  V )
22 eqid 2193 . . . 4  |-  ( Base `  K )  =  (
Base `  K )
23 eqid 2193 . . . 4  |-  ( +g  `  K )  =  ( +g  `  K )
24 eqid 2193 . . . 4  |-  ( 0g
`  K )  =  ( 0g `  K
)
2522, 23, 24grpidvalg 12959 . . 3  |-  ( K  e.  V  ->  ( 0g `  K )  =  ( iota x ( x  e.  ( Base `  K )  /\  A. y  e.  ( Base `  K ) ( ( x ( +g  `  K
) y )  =  y  /\  ( y ( +g  `  K
) x )  =  y ) ) ) )
2621, 25syl 14 . 2  |-  ( ph  ->  ( 0g `  K
)  =  ( iota
x ( x  e.  ( Base `  K
)  /\  A. y  e.  ( Base `  K
) ( ( x ( +g  `  K
) y )  =  y  /\  ( y ( +g  `  K
) x )  =  y ) ) ) )
27 grpidproddg.l . . 3  |-  ( ph  ->  L  e.  W )
28 eqid 2193 . . . 4  |-  ( Base `  L )  =  (
Base `  L )
29 eqid 2193 . . . 4  |-  ( +g  `  L )  =  ( +g  `  L )
30 eqid 2193 . . . 4  |-  ( 0g
`  L )  =  ( 0g `  L
)
3128, 29, 30grpidvalg 12959 . . 3  |-  ( L  e.  W  ->  ( 0g `  L )  =  ( iota x ( x  e.  ( Base `  L )  /\  A. y  e.  ( Base `  L ) ( ( x ( +g  `  L
) y )  =  y  /\  ( y ( +g  `  L
) x )  =  y ) ) ) )
3227, 31syl 14 . 2  |-  ( ph  ->  ( 0g `  L
)  =  ( iota
x ( x  e.  ( Base `  L
)  /\  A. y  e.  ( Base `  L
) ( ( x ( +g  `  L
) y )  =  y  /\  ( y ( +g  `  L
) x )  =  y ) ) ) )
3320, 26, 323eqtr4d 2236 1  |-  ( ph  ->  ( 0g `  K
)  =  ( 0g
`  L ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105    = wceq 1364    e. wcel 2164   A.wral 2472   iotacio 5214   ` cfv 5255  (class class class)co 5919   Basecbs 12621   +g cplusg 12698   0gc0g 12870
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-13 2166  ax-14 2167  ax-ext 2175  ax-sep 4148  ax-pow 4204  ax-pr 4239  ax-un 4465  ax-cnex 7965  ax-resscn 7966  ax-1re 7968  ax-addrcl 7971
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-nf 1472  df-sb 1774  df-eu 2045  df-mo 2046  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-ral 2477  df-rex 2478  df-v 2762  df-sbc 2987  df-csb 3082  df-un 3158  df-in 3160  df-ss 3167  df-pw 3604  df-sn 3625  df-pr 3626  df-op 3628  df-uni 3837  df-int 3872  df-br 4031  df-opab 4092  df-mpt 4093  df-id 4325  df-xp 4666  df-rel 4667  df-cnv 4668  df-co 4669  df-dm 4670  df-rn 4671  df-res 4672  df-iota 5216  df-fun 5257  df-fn 5258  df-fv 5263  df-riota 5874  df-ov 5922  df-inn 8985  df-ndx 12624  df-slot 12625  df-base 12627  df-0g 12872
This theorem is referenced by:  gsumpropd  12978  gsumpropd2  12979  mhmpropd  13041  grppropd  13092  grpinvpropdg  13150  mulgpropdg  13237  rngidpropdg  13645  sralmod0g  13950
  Copyright terms: Public domain W3C validator