| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > grpidpropdg | Unicode version | ||
| Description: If two structures have the same base set, and the values of their group (addition) operations are equal for all pairs of elements of the base set, they have the same identity element. (Contributed by Mario Carneiro, 27-Nov-2014.) |
| Ref | Expression |
|---|---|
| grpidpropd.1 |
|
| grpidpropd.2 |
|
| grpidproddg.k |
|
| grpidproddg.l |
|
| grpidpropd.3 |
|
| Ref | Expression |
|---|---|
| grpidpropdg |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | grpidpropd.3 |
. . . . . . . . 9
| |
| 2 | 1 | eqeq1d 2215 |
. . . . . . . 8
|
| 3 | 1 | oveqrspc2v 5984 |
. . . . . . . . . . 11
|
| 4 | 3 | oveqrspc2v 5984 |
. . . . . . . . . 10
|
| 5 | 4 | ancom2s 566 |
. . . . . . . . 9
|
| 6 | 5 | eqeq1d 2215 |
. . . . . . . 8
|
| 7 | 2, 6 | anbi12d 473 |
. . . . . . 7
|
| 8 | 7 | anassrs 400 |
. . . . . 6
|
| 9 | 8 | ralbidva 2503 |
. . . . 5
|
| 10 | 9 | pm5.32da 452 |
. . . 4
|
| 11 | grpidpropd.1 |
. . . . . 6
| |
| 12 | 11 | eleq2d 2276 |
. . . . 5
|
| 13 | 11 | raleqdv 2709 |
. . . . 5
|
| 14 | 12, 13 | anbi12d 473 |
. . . 4
|
| 15 | grpidpropd.2 |
. . . . . 6
| |
| 16 | 15 | eleq2d 2276 |
. . . . 5
|
| 17 | 15 | raleqdv 2709 |
. . . . 5
|
| 18 | 16, 17 | anbi12d 473 |
. . . 4
|
| 19 | 10, 14, 18 | 3bitr3d 218 |
. . 3
|
| 20 | 19 | iotabidv 5263 |
. 2
|
| 21 | grpidproddg.k |
. . 3
| |
| 22 | eqid 2206 |
. . . 4
| |
| 23 | eqid 2206 |
. . . 4
| |
| 24 | eqid 2206 |
. . . 4
| |
| 25 | 22, 23, 24 | grpidvalg 13280 |
. . 3
|
| 26 | 21, 25 | syl 14 |
. 2
|
| 27 | grpidproddg.l |
. . 3
| |
| 28 | eqid 2206 |
. . . 4
| |
| 29 | eqid 2206 |
. . . 4
| |
| 30 | eqid 2206 |
. . . 4
| |
| 31 | 28, 29, 30 | grpidvalg 13280 |
. . 3
|
| 32 | 27, 31 | syl 14 |
. 2
|
| 33 | 20, 26, 32 | 3eqtr4d 2249 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-13 2179 ax-14 2180 ax-ext 2188 ax-sep 4170 ax-pow 4226 ax-pr 4261 ax-un 4488 ax-cnex 8036 ax-resscn 8037 ax-1re 8039 ax-addrcl 8042 |
| This theorem depends on definitions: df-bi 117 df-3an 983 df-tru 1376 df-nf 1485 df-sb 1787 df-eu 2058 df-mo 2059 df-clab 2193 df-cleq 2199 df-clel 2202 df-nfc 2338 df-ral 2490 df-rex 2491 df-v 2775 df-sbc 3003 df-csb 3098 df-un 3174 df-in 3176 df-ss 3183 df-pw 3623 df-sn 3644 df-pr 3645 df-op 3647 df-uni 3857 df-int 3892 df-br 4052 df-opab 4114 df-mpt 4115 df-id 4348 df-xp 4689 df-rel 4690 df-cnv 4691 df-co 4692 df-dm 4693 df-rn 4694 df-res 4695 df-iota 5241 df-fun 5282 df-fn 5283 df-fv 5288 df-riota 5912 df-ov 5960 df-inn 9057 df-ndx 12910 df-slot 12911 df-base 12913 df-0g 13165 |
| This theorem is referenced by: gsumpropd 13299 gsumpropd2 13300 mhmpropd 13373 grppropd 13424 grpinvpropdg 13482 mulgpropdg 13575 rngidpropdg 13983 sralmod0g 14288 |
| Copyright terms: Public domain | W3C validator |