| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > grpidpropdg | Unicode version | ||
| Description: If two structures have the same base set, and the values of their group (addition) operations are equal for all pairs of elements of the base set, they have the same identity element. (Contributed by Mario Carneiro, 27-Nov-2014.) |
| Ref | Expression |
|---|---|
| grpidpropd.1 |
|
| grpidpropd.2 |
|
| grpidproddg.k |
|
| grpidproddg.l |
|
| grpidpropd.3 |
|
| Ref | Expression |
|---|---|
| grpidpropdg |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | grpidpropd.3 |
. . . . . . . . 9
| |
| 2 | 1 | eqeq1d 2205 |
. . . . . . . 8
|
| 3 | 1 | oveqrspc2v 5952 |
. . . . . . . . . . 11
|
| 4 | 3 | oveqrspc2v 5952 |
. . . . . . . . . 10
|
| 5 | 4 | ancom2s 566 |
. . . . . . . . 9
|
| 6 | 5 | eqeq1d 2205 |
. . . . . . . 8
|
| 7 | 2, 6 | anbi12d 473 |
. . . . . . 7
|
| 8 | 7 | anassrs 400 |
. . . . . 6
|
| 9 | 8 | ralbidva 2493 |
. . . . 5
|
| 10 | 9 | pm5.32da 452 |
. . . 4
|
| 11 | grpidpropd.1 |
. . . . . 6
| |
| 12 | 11 | eleq2d 2266 |
. . . . 5
|
| 13 | 11 | raleqdv 2699 |
. . . . 5
|
| 14 | 12, 13 | anbi12d 473 |
. . . 4
|
| 15 | grpidpropd.2 |
. . . . . 6
| |
| 16 | 15 | eleq2d 2266 |
. . . . 5
|
| 17 | 15 | raleqdv 2699 |
. . . . 5
|
| 18 | 16, 17 | anbi12d 473 |
. . . 4
|
| 19 | 10, 14, 18 | 3bitr3d 218 |
. . 3
|
| 20 | 19 | iotabidv 5242 |
. 2
|
| 21 | grpidproddg.k |
. . 3
| |
| 22 | eqid 2196 |
. . . 4
| |
| 23 | eqid 2196 |
. . . 4
| |
| 24 | eqid 2196 |
. . . 4
| |
| 25 | 22, 23, 24 | grpidvalg 13075 |
. . 3
|
| 26 | 21, 25 | syl 14 |
. 2
|
| 27 | grpidproddg.l |
. . 3
| |
| 28 | eqid 2196 |
. . . 4
| |
| 29 | eqid 2196 |
. . . 4
| |
| 30 | eqid 2196 |
. . . 4
| |
| 31 | 28, 29, 30 | grpidvalg 13075 |
. . 3
|
| 32 | 27, 31 | syl 14 |
. 2
|
| 33 | 20, 26, 32 | 3eqtr4d 2239 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-13 2169 ax-14 2170 ax-ext 2178 ax-sep 4152 ax-pow 4208 ax-pr 4243 ax-un 4469 ax-cnex 7987 ax-resscn 7988 ax-1re 7990 ax-addrcl 7993 |
| This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-nf 1475 df-sb 1777 df-eu 2048 df-mo 2049 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-ral 2480 df-rex 2481 df-v 2765 df-sbc 2990 df-csb 3085 df-un 3161 df-in 3163 df-ss 3170 df-pw 3608 df-sn 3629 df-pr 3630 df-op 3632 df-uni 3841 df-int 3876 df-br 4035 df-opab 4096 df-mpt 4097 df-id 4329 df-xp 4670 df-rel 4671 df-cnv 4672 df-co 4673 df-dm 4674 df-rn 4675 df-res 4676 df-iota 5220 df-fun 5261 df-fn 5262 df-fv 5267 df-riota 5880 df-ov 5928 df-inn 9008 df-ndx 12706 df-slot 12707 df-base 12709 df-0g 12960 |
| This theorem is referenced by: gsumpropd 13094 gsumpropd2 13095 mhmpropd 13168 grppropd 13219 grpinvpropdg 13277 mulgpropdg 13370 rngidpropdg 13778 sralmod0g 14083 |
| Copyright terms: Public domain | W3C validator |