| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > grpidpropdg | Unicode version | ||
| Description: If two structures have the same base set, and the values of their group (addition) operations are equal for all pairs of elements of the base set, they have the same identity element. (Contributed by Mario Carneiro, 27-Nov-2014.) |
| Ref | Expression |
|---|---|
| grpidpropd.1 |
|
| grpidpropd.2 |
|
| grpidproddg.k |
|
| grpidproddg.l |
|
| grpidpropd.3 |
|
| Ref | Expression |
|---|---|
| grpidpropdg |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | grpidpropd.3 |
. . . . . . . . 9
| |
| 2 | 1 | eqeq1d 2238 |
. . . . . . . 8
|
| 3 | 1 | oveqrspc2v 6027 |
. . . . . . . . . . 11
|
| 4 | 3 | oveqrspc2v 6027 |
. . . . . . . . . 10
|
| 5 | 4 | ancom2s 566 |
. . . . . . . . 9
|
| 6 | 5 | eqeq1d 2238 |
. . . . . . . 8
|
| 7 | 2, 6 | anbi12d 473 |
. . . . . . 7
|
| 8 | 7 | anassrs 400 |
. . . . . 6
|
| 9 | 8 | ralbidva 2526 |
. . . . 5
|
| 10 | 9 | pm5.32da 452 |
. . . 4
|
| 11 | grpidpropd.1 |
. . . . . 6
| |
| 12 | 11 | eleq2d 2299 |
. . . . 5
|
| 13 | 11 | raleqdv 2734 |
. . . . 5
|
| 14 | 12, 13 | anbi12d 473 |
. . . 4
|
| 15 | grpidpropd.2 |
. . . . . 6
| |
| 16 | 15 | eleq2d 2299 |
. . . . 5
|
| 17 | 15 | raleqdv 2734 |
. . . . 5
|
| 18 | 16, 17 | anbi12d 473 |
. . . 4
|
| 19 | 10, 14, 18 | 3bitr3d 218 |
. . 3
|
| 20 | 19 | iotabidv 5300 |
. 2
|
| 21 | grpidproddg.k |
. . 3
| |
| 22 | eqid 2229 |
. . . 4
| |
| 23 | eqid 2229 |
. . . 4
| |
| 24 | eqid 2229 |
. . . 4
| |
| 25 | 22, 23, 24 | grpidvalg 13401 |
. . 3
|
| 26 | 21, 25 | syl 14 |
. 2
|
| 27 | grpidproddg.l |
. . 3
| |
| 28 | eqid 2229 |
. . . 4
| |
| 29 | eqid 2229 |
. . . 4
| |
| 30 | eqid 2229 |
. . . 4
| |
| 31 | 28, 29, 30 | grpidvalg 13401 |
. . 3
|
| 32 | 27, 31 | syl 14 |
. 2
|
| 33 | 20, 26, 32 | 3eqtr4d 2272 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-13 2202 ax-14 2203 ax-ext 2211 ax-sep 4201 ax-pow 4257 ax-pr 4292 ax-un 4523 ax-cnex 8086 ax-resscn 8087 ax-1re 8089 ax-addrcl 8092 |
| This theorem depends on definitions: df-bi 117 df-3an 1004 df-tru 1398 df-nf 1507 df-sb 1809 df-eu 2080 df-mo 2081 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-ral 2513 df-rex 2514 df-v 2801 df-sbc 3029 df-csb 3125 df-un 3201 df-in 3203 df-ss 3210 df-pw 3651 df-sn 3672 df-pr 3673 df-op 3675 df-uni 3888 df-int 3923 df-br 4083 df-opab 4145 df-mpt 4146 df-id 4383 df-xp 4724 df-rel 4725 df-cnv 4726 df-co 4727 df-dm 4728 df-rn 4729 df-res 4730 df-iota 5277 df-fun 5319 df-fn 5320 df-fv 5325 df-riota 5953 df-ov 6003 df-inn 9107 df-ndx 13030 df-slot 13031 df-base 13033 df-0g 13286 |
| This theorem is referenced by: gsumpropd 13420 gsumpropd2 13421 mhmpropd 13494 grppropd 13545 grpinvpropdg 13603 mulgpropdg 13696 rngidpropdg 14104 sralmod0g 14409 |
| Copyright terms: Public domain | W3C validator |