Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > grpidpropdg | Unicode version |
Description: If two structures have the same base set, and the values of their group (addition) operations are equal for all pairs of elements of the base set, they have the same identity element. (Contributed by Mario Carneiro, 27-Nov-2014.) |
Ref | Expression |
---|---|
grpidpropd.1 | |
grpidpropd.2 | |
grpidproddg.k | |
grpidproddg.l | |
grpidpropd.3 |
Ref | Expression |
---|---|
grpidpropdg |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | grpidpropd.3 | . . . . . . . . 9 | |
2 | 1 | eqeq1d 2174 | . . . . . . . 8 |
3 | 1 | oveqrspc2v 5869 | . . . . . . . . . . 11 |
4 | 3 | oveqrspc2v 5869 | . . . . . . . . . 10 |
5 | 4 | ancom2s 556 | . . . . . . . . 9 |
6 | 5 | eqeq1d 2174 | . . . . . . . 8 |
7 | 2, 6 | anbi12d 465 | . . . . . . 7 |
8 | 7 | anassrs 398 | . . . . . 6 |
9 | 8 | ralbidva 2462 | . . . . 5 |
10 | 9 | pm5.32da 448 | . . . 4 |
11 | grpidpropd.1 | . . . . . 6 | |
12 | 11 | eleq2d 2236 | . . . . 5 |
13 | 11 | raleqdv 2667 | . . . . 5 |
14 | 12, 13 | anbi12d 465 | . . . 4 |
15 | grpidpropd.2 | . . . . . 6 | |
16 | 15 | eleq2d 2236 | . . . . 5 |
17 | 15 | raleqdv 2667 | . . . . 5 |
18 | 16, 17 | anbi12d 465 | . . . 4 |
19 | 10, 14, 18 | 3bitr3d 217 | . . 3 |
20 | 19 | iotabidv 5174 | . 2 |
21 | grpidproddg.k | . . 3 | |
22 | eqid 2165 | . . . 4 | |
23 | eqid 2165 | . . . 4 | |
24 | eqid 2165 | . . . 4 | |
25 | 22, 23, 24 | grpidvalg 12604 | . . 3 |
26 | 21, 25 | syl 14 | . 2 |
27 | grpidproddg.l | . . 3 | |
28 | eqid 2165 | . . . 4 | |
29 | eqid 2165 | . . . 4 | |
30 | eqid 2165 | . . . 4 | |
31 | 28, 29, 30 | grpidvalg 12604 | . . 3 |
32 | 27, 31 | syl 14 | . 2 |
33 | 20, 26, 32 | 3eqtr4d 2208 | 1 |
Colors of variables: wff set class |
Syntax hints: wi 4 wa 103 wb 104 wceq 1343 wcel 2136 wral 2444 cio 5151 cfv 5188 (class class class)co 5842 cbs 12394 cplusg 12457 c0g 12573 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 699 ax-5 1435 ax-7 1436 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-8 1492 ax-10 1493 ax-11 1494 ax-i12 1495 ax-bndl 1497 ax-4 1498 ax-17 1514 ax-i9 1518 ax-ial 1522 ax-i5r 1523 ax-13 2138 ax-14 2139 ax-ext 2147 ax-sep 4100 ax-pow 4153 ax-pr 4187 ax-un 4411 ax-cnex 7844 ax-resscn 7845 ax-1re 7847 ax-addrcl 7850 |
This theorem depends on definitions: df-bi 116 df-3an 970 df-tru 1346 df-nf 1449 df-sb 1751 df-eu 2017 df-mo 2018 df-clab 2152 df-cleq 2158 df-clel 2161 df-nfc 2297 df-ral 2449 df-rex 2450 df-v 2728 df-sbc 2952 df-csb 3046 df-un 3120 df-in 3122 df-ss 3129 df-pw 3561 df-sn 3582 df-pr 3583 df-op 3585 df-uni 3790 df-int 3825 df-br 3983 df-opab 4044 df-mpt 4045 df-id 4271 df-xp 4610 df-rel 4611 df-cnv 4612 df-co 4613 df-dm 4614 df-rn 4615 df-res 4616 df-iota 5153 df-fun 5190 df-fn 5191 df-fv 5196 df-riota 5798 df-ov 5845 df-inn 8858 df-ndx 12397 df-slot 12398 df-base 12400 df-0g 12575 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |