| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > grpidpropdg | Unicode version | ||
| Description: If two structures have the same base set, and the values of their group (addition) operations are equal for all pairs of elements of the base set, they have the same identity element. (Contributed by Mario Carneiro, 27-Nov-2014.) |
| Ref | Expression |
|---|---|
| grpidpropd.1 |
|
| grpidpropd.2 |
|
| grpidproddg.k |
|
| grpidproddg.l |
|
| grpidpropd.3 |
|
| Ref | Expression |
|---|---|
| grpidpropdg |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | grpidpropd.3 |
. . . . . . . . 9
| |
| 2 | 1 | eqeq1d 2213 |
. . . . . . . 8
|
| 3 | 1 | oveqrspc2v 5961 |
. . . . . . . . . . 11
|
| 4 | 3 | oveqrspc2v 5961 |
. . . . . . . . . 10
|
| 5 | 4 | ancom2s 566 |
. . . . . . . . 9
|
| 6 | 5 | eqeq1d 2213 |
. . . . . . . 8
|
| 7 | 2, 6 | anbi12d 473 |
. . . . . . 7
|
| 8 | 7 | anassrs 400 |
. . . . . 6
|
| 9 | 8 | ralbidva 2501 |
. . . . 5
|
| 10 | 9 | pm5.32da 452 |
. . . 4
|
| 11 | grpidpropd.1 |
. . . . . 6
| |
| 12 | 11 | eleq2d 2274 |
. . . . 5
|
| 13 | 11 | raleqdv 2707 |
. . . . 5
|
| 14 | 12, 13 | anbi12d 473 |
. . . 4
|
| 15 | grpidpropd.2 |
. . . . . 6
| |
| 16 | 15 | eleq2d 2274 |
. . . . 5
|
| 17 | 15 | raleqdv 2707 |
. . . . 5
|
| 18 | 16, 17 | anbi12d 473 |
. . . 4
|
| 19 | 10, 14, 18 | 3bitr3d 218 |
. . 3
|
| 20 | 19 | iotabidv 5251 |
. 2
|
| 21 | grpidproddg.k |
. . 3
| |
| 22 | eqid 2204 |
. . . 4
| |
| 23 | eqid 2204 |
. . . 4
| |
| 24 | eqid 2204 |
. . . 4
| |
| 25 | 22, 23, 24 | grpidvalg 13123 |
. . 3
|
| 26 | 21, 25 | syl 14 |
. 2
|
| 27 | grpidproddg.l |
. . 3
| |
| 28 | eqid 2204 |
. . . 4
| |
| 29 | eqid 2204 |
. . . 4
| |
| 30 | eqid 2204 |
. . . 4
| |
| 31 | 28, 29, 30 | grpidvalg 13123 |
. . 3
|
| 32 | 27, 31 | syl 14 |
. 2
|
| 33 | 20, 26, 32 | 3eqtr4d 2247 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1469 ax-7 1470 ax-gen 1471 ax-ie1 1515 ax-ie2 1516 ax-8 1526 ax-10 1527 ax-11 1528 ax-i12 1529 ax-bndl 1531 ax-4 1532 ax-17 1548 ax-i9 1552 ax-ial 1556 ax-i5r 1557 ax-13 2177 ax-14 2178 ax-ext 2186 ax-sep 4161 ax-pow 4217 ax-pr 4252 ax-un 4478 ax-cnex 7998 ax-resscn 7999 ax-1re 8001 ax-addrcl 8004 |
| This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1375 df-nf 1483 df-sb 1785 df-eu 2056 df-mo 2057 df-clab 2191 df-cleq 2197 df-clel 2200 df-nfc 2336 df-ral 2488 df-rex 2489 df-v 2773 df-sbc 2998 df-csb 3093 df-un 3169 df-in 3171 df-ss 3178 df-pw 3617 df-sn 3638 df-pr 3639 df-op 3641 df-uni 3850 df-int 3885 df-br 4044 df-opab 4105 df-mpt 4106 df-id 4338 df-xp 4679 df-rel 4680 df-cnv 4681 df-co 4682 df-dm 4683 df-rn 4684 df-res 4685 df-iota 5229 df-fun 5270 df-fn 5271 df-fv 5276 df-riota 5889 df-ov 5937 df-inn 9019 df-ndx 12754 df-slot 12755 df-base 12757 df-0g 13008 |
| This theorem is referenced by: gsumpropd 13142 gsumpropd2 13143 mhmpropd 13216 grppropd 13267 grpinvpropdg 13325 mulgpropdg 13418 rngidpropdg 13826 sralmod0g 14131 |
| Copyright terms: Public domain | W3C validator |