| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > grpidpropdg | Unicode version | ||
| Description: If two structures have the same base set, and the values of their group (addition) operations are equal for all pairs of elements of the base set, they have the same identity element. (Contributed by Mario Carneiro, 27-Nov-2014.) |
| Ref | Expression |
|---|---|
| grpidpropd.1 |
|
| grpidpropd.2 |
|
| grpidproddg.k |
|
| grpidproddg.l |
|
| grpidpropd.3 |
|
| Ref | Expression |
|---|---|
| grpidpropdg |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | grpidpropd.3 |
. . . . . . . . 9
| |
| 2 | 1 | eqeq1d 2213 |
. . . . . . . 8
|
| 3 | 1 | oveqrspc2v 5970 |
. . . . . . . . . . 11
|
| 4 | 3 | oveqrspc2v 5970 |
. . . . . . . . . 10
|
| 5 | 4 | ancom2s 566 |
. . . . . . . . 9
|
| 6 | 5 | eqeq1d 2213 |
. . . . . . . 8
|
| 7 | 2, 6 | anbi12d 473 |
. . . . . . 7
|
| 8 | 7 | anassrs 400 |
. . . . . 6
|
| 9 | 8 | ralbidva 2501 |
. . . . 5
|
| 10 | 9 | pm5.32da 452 |
. . . 4
|
| 11 | grpidpropd.1 |
. . . . . 6
| |
| 12 | 11 | eleq2d 2274 |
. . . . 5
|
| 13 | 11 | raleqdv 2707 |
. . . . 5
|
| 14 | 12, 13 | anbi12d 473 |
. . . 4
|
| 15 | grpidpropd.2 |
. . . . . 6
| |
| 16 | 15 | eleq2d 2274 |
. . . . 5
|
| 17 | 15 | raleqdv 2707 |
. . . . 5
|
| 18 | 16, 17 | anbi12d 473 |
. . . 4
|
| 19 | 10, 14, 18 | 3bitr3d 218 |
. . 3
|
| 20 | 19 | iotabidv 5253 |
. 2
|
| 21 | grpidproddg.k |
. . 3
| |
| 22 | eqid 2204 |
. . . 4
| |
| 23 | eqid 2204 |
. . . 4
| |
| 24 | eqid 2204 |
. . . 4
| |
| 25 | 22, 23, 24 | grpidvalg 13147 |
. . 3
|
| 26 | 21, 25 | syl 14 |
. 2
|
| 27 | grpidproddg.l |
. . 3
| |
| 28 | eqid 2204 |
. . . 4
| |
| 29 | eqid 2204 |
. . . 4
| |
| 30 | eqid 2204 |
. . . 4
| |
| 31 | 28, 29, 30 | grpidvalg 13147 |
. . 3
|
| 32 | 27, 31 | syl 14 |
. 2
|
| 33 | 20, 26, 32 | 3eqtr4d 2247 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1469 ax-7 1470 ax-gen 1471 ax-ie1 1515 ax-ie2 1516 ax-8 1526 ax-10 1527 ax-11 1528 ax-i12 1529 ax-bndl 1531 ax-4 1532 ax-17 1548 ax-i9 1552 ax-ial 1556 ax-i5r 1557 ax-13 2177 ax-14 2178 ax-ext 2186 ax-sep 4161 ax-pow 4217 ax-pr 4252 ax-un 4479 ax-cnex 8015 ax-resscn 8016 ax-1re 8018 ax-addrcl 8021 |
| This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1375 df-nf 1483 df-sb 1785 df-eu 2056 df-mo 2057 df-clab 2191 df-cleq 2197 df-clel 2200 df-nfc 2336 df-ral 2488 df-rex 2489 df-v 2773 df-sbc 2998 df-csb 3093 df-un 3169 df-in 3171 df-ss 3178 df-pw 3617 df-sn 3638 df-pr 3639 df-op 3641 df-uni 3850 df-int 3885 df-br 4044 df-opab 4105 df-mpt 4106 df-id 4339 df-xp 4680 df-rel 4681 df-cnv 4682 df-co 4683 df-dm 4684 df-rn 4685 df-res 4686 df-iota 5231 df-fun 5272 df-fn 5273 df-fv 5278 df-riota 5898 df-ov 5946 df-inn 9036 df-ndx 12777 df-slot 12778 df-base 12780 df-0g 13032 |
| This theorem is referenced by: gsumpropd 13166 gsumpropd2 13167 mhmpropd 13240 grppropd 13291 grpinvpropdg 13349 mulgpropdg 13442 rngidpropdg 13850 sralmod0g 14155 |
| Copyright terms: Public domain | W3C validator |