| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > isotilem | Unicode version | ||
| Description: Lemma for isoti 7174. (Contributed by Jim Kingdon, 26-Nov-2021.) |
| Ref | Expression |
|---|---|
| isotilem |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | isof1o 5931 |
. . . . . 6
| |
| 2 | f1of 5572 |
. . . . . 6
| |
| 3 | ffvelcdm 5768 |
. . . . . . . 8
| |
| 4 | 3 | ex 115 |
. . . . . . 7
|
| 5 | ffvelcdm 5768 |
. . . . . . . 8
| |
| 6 | 5 | ex 115 |
. . . . . . 7
|
| 7 | 4, 6 | anim12d 335 |
. . . . . 6
|
| 8 | 1, 2, 7 | 3syl 17 |
. . . . 5
|
| 9 | 8 | imp 124 |
. . . 4
|
| 10 | eqeq1 2236 |
. . . . . 6
| |
| 11 | breq1 4086 |
. . . . . . . 8
| |
| 12 | 11 | notbid 671 |
. . . . . . 7
|
| 13 | breq2 4087 |
. . . . . . . 8
| |
| 14 | 13 | notbid 671 |
. . . . . . 7
|
| 15 | 12, 14 | anbi12d 473 |
. . . . . 6
|
| 16 | 10, 15 | bibi12d 235 |
. . . . 5
|
| 17 | eqeq2 2239 |
. . . . . 6
| |
| 18 | breq2 4087 |
. . . . . . . 8
| |
| 19 | 18 | notbid 671 |
. . . . . . 7
|
| 20 | breq1 4086 |
. . . . . . . 8
| |
| 21 | 20 | notbid 671 |
. . . . . . 7
|
| 22 | 19, 21 | anbi12d 473 |
. . . . . 6
|
| 23 | 17, 22 | bibi12d 235 |
. . . . 5
|
| 24 | 16, 23 | rspc2v 2920 |
. . . 4
|
| 25 | 9, 24 | syl 14 |
. . 3
|
| 26 | f1of1 5571 |
. . . . . . 7
| |
| 27 | 1, 26 | syl 14 |
. . . . . 6
|
| 28 | f1fveq 5896 |
. . . . . 6
| |
| 29 | 27, 28 | sylan 283 |
. . . . 5
|
| 30 | 29 | bicomd 141 |
. . . 4
|
| 31 | isorel 5932 |
. . . . . 6
| |
| 32 | 31 | notbid 671 |
. . . . 5
|
| 33 | isorel 5932 |
. . . . . . 7
| |
| 34 | 33 | notbid 671 |
. . . . . 6
|
| 35 | 34 | ancom2s 566 |
. . . . 5
|
| 36 | 32, 35 | anbi12d 473 |
. . . 4
|
| 37 | 30, 36 | bibi12d 235 |
. . 3
|
| 38 | 25, 37 | sylibrd 169 |
. 2
|
| 39 | 38 | ralrimdvva 2615 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 617 ax-in2 618 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-14 2203 ax-ext 2211 ax-sep 4202 ax-pow 4258 ax-pr 4293 |
| This theorem depends on definitions: df-bi 117 df-3an 1004 df-tru 1398 df-nf 1507 df-sb 1809 df-eu 2080 df-mo 2081 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-ral 2513 df-rex 2514 df-v 2801 df-sbc 3029 df-un 3201 df-in 3203 df-ss 3210 df-pw 3651 df-sn 3672 df-pr 3673 df-op 3675 df-uni 3889 df-br 4084 df-opab 4146 df-id 4384 df-xp 4725 df-rel 4726 df-cnv 4727 df-co 4728 df-dm 4729 df-rn 4730 df-iota 5278 df-fun 5320 df-fn 5321 df-f 5322 df-f1 5323 df-f1o 5325 df-fv 5326 df-isom 5327 |
| This theorem is referenced by: isoti 7174 |
| Copyright terms: Public domain | W3C validator |