Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > isotilem | Unicode version |
Description: Lemma for isoti 6939. (Contributed by Jim Kingdon, 26-Nov-2021.) |
Ref | Expression |
---|---|
isotilem |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | isof1o 5748 | . . . . . 6 | |
2 | f1of 5407 | . . . . . 6 | |
3 | ffvelrn 5593 | . . . . . . . 8 | |
4 | 3 | ex 114 | . . . . . . 7 |
5 | ffvelrn 5593 | . . . . . . . 8 | |
6 | 5 | ex 114 | . . . . . . 7 |
7 | 4, 6 | anim12d 333 | . . . . . 6 |
8 | 1, 2, 7 | 3syl 17 | . . . . 5 |
9 | 8 | imp 123 | . . . 4 |
10 | eqeq1 2161 | . . . . . 6 | |
11 | breq1 3964 | . . . . . . . 8 | |
12 | 11 | notbid 657 | . . . . . . 7 |
13 | breq2 3965 | . . . . . . . 8 | |
14 | 13 | notbid 657 | . . . . . . 7 |
15 | 12, 14 | anbi12d 465 | . . . . . 6 |
16 | 10, 15 | bibi12d 234 | . . . . 5 |
17 | eqeq2 2164 | . . . . . 6 | |
18 | breq2 3965 | . . . . . . . 8 | |
19 | 18 | notbid 657 | . . . . . . 7 |
20 | breq1 3964 | . . . . . . . 8 | |
21 | 20 | notbid 657 | . . . . . . 7 |
22 | 19, 21 | anbi12d 465 | . . . . . 6 |
23 | 17, 22 | bibi12d 234 | . . . . 5 |
24 | 16, 23 | rspc2v 2826 | . . . 4 |
25 | 9, 24 | syl 14 | . . 3 |
26 | f1of1 5406 | . . . . . . 7 | |
27 | 1, 26 | syl 14 | . . . . . 6 |
28 | f1fveq 5713 | . . . . . 6 | |
29 | 27, 28 | sylan 281 | . . . . 5 |
30 | 29 | bicomd 140 | . . . 4 |
31 | isorel 5749 | . . . . . 6 | |
32 | 31 | notbid 657 | . . . . 5 |
33 | isorel 5749 | . . . . . . 7 | |
34 | 33 | notbid 657 | . . . . . 6 |
35 | 34 | ancom2s 556 | . . . . 5 |
36 | 32, 35 | anbi12d 465 | . . . 4 |
37 | 30, 36 | bibi12d 234 | . . 3 |
38 | 25, 37 | sylibrd 168 | . 2 |
39 | 38 | ralrimdvva 2539 | 1 |
Colors of variables: wff set class |
Syntax hints: wn 3 wi 4 wa 103 wb 104 wceq 1332 wcel 2125 wral 2432 class class class wbr 3961 wf 5159 wf1 5160 wf1o 5162 cfv 5163 wiso 5164 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 604 ax-in2 605 ax-io 699 ax-5 1424 ax-7 1425 ax-gen 1426 ax-ie1 1470 ax-ie2 1471 ax-8 1481 ax-10 1482 ax-11 1483 ax-i12 1484 ax-bndl 1486 ax-4 1487 ax-17 1503 ax-i9 1507 ax-ial 1511 ax-i5r 1512 ax-14 2128 ax-ext 2136 ax-sep 4078 ax-pow 4130 ax-pr 4164 |
This theorem depends on definitions: df-bi 116 df-3an 965 df-tru 1335 df-nf 1438 df-sb 1740 df-eu 2006 df-mo 2007 df-clab 2141 df-cleq 2147 df-clel 2150 df-nfc 2285 df-ral 2437 df-rex 2438 df-v 2711 df-sbc 2934 df-un 3102 df-in 3104 df-ss 3111 df-pw 3541 df-sn 3562 df-pr 3563 df-op 3565 df-uni 3769 df-br 3962 df-opab 4022 df-id 4248 df-xp 4585 df-rel 4586 df-cnv 4587 df-co 4588 df-dm 4589 df-rn 4590 df-iota 5128 df-fun 5165 df-fn 5166 df-f 5167 df-f1 5168 df-f1o 5170 df-fv 5171 df-isom 5172 |
This theorem is referenced by: isoti 6939 |
Copyright terms: Public domain | W3C validator |