| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > isotilem | Unicode version | ||
| Description: Lemma for isoti 7073. (Contributed by Jim Kingdon, 26-Nov-2021.) |
| Ref | Expression |
|---|---|
| isotilem |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | isof1o 5854 |
. . . . . 6
| |
| 2 | f1of 5504 |
. . . . . 6
| |
| 3 | ffvelcdm 5695 |
. . . . . . . 8
| |
| 4 | 3 | ex 115 |
. . . . . . 7
|
| 5 | ffvelcdm 5695 |
. . . . . . . 8
| |
| 6 | 5 | ex 115 |
. . . . . . 7
|
| 7 | 4, 6 | anim12d 335 |
. . . . . 6
|
| 8 | 1, 2, 7 | 3syl 17 |
. . . . 5
|
| 9 | 8 | imp 124 |
. . . 4
|
| 10 | eqeq1 2203 |
. . . . . 6
| |
| 11 | breq1 4036 |
. . . . . . . 8
| |
| 12 | 11 | notbid 668 |
. . . . . . 7
|
| 13 | breq2 4037 |
. . . . . . . 8
| |
| 14 | 13 | notbid 668 |
. . . . . . 7
|
| 15 | 12, 14 | anbi12d 473 |
. . . . . 6
|
| 16 | 10, 15 | bibi12d 235 |
. . . . 5
|
| 17 | eqeq2 2206 |
. . . . . 6
| |
| 18 | breq2 4037 |
. . . . . . . 8
| |
| 19 | 18 | notbid 668 |
. . . . . . 7
|
| 20 | breq1 4036 |
. . . . . . . 8
| |
| 21 | 20 | notbid 668 |
. . . . . . 7
|
| 22 | 19, 21 | anbi12d 473 |
. . . . . 6
|
| 23 | 17, 22 | bibi12d 235 |
. . . . 5
|
| 24 | 16, 23 | rspc2v 2881 |
. . . 4
|
| 25 | 9, 24 | syl 14 |
. . 3
|
| 26 | f1of1 5503 |
. . . . . . 7
| |
| 27 | 1, 26 | syl 14 |
. . . . . 6
|
| 28 | f1fveq 5819 |
. . . . . 6
| |
| 29 | 27, 28 | sylan 283 |
. . . . 5
|
| 30 | 29 | bicomd 141 |
. . . 4
|
| 31 | isorel 5855 |
. . . . . 6
| |
| 32 | 31 | notbid 668 |
. . . . 5
|
| 33 | isorel 5855 |
. . . . . . 7
| |
| 34 | 33 | notbid 668 |
. . . . . 6
|
| 35 | 34 | ancom2s 566 |
. . . . 5
|
| 36 | 32, 35 | anbi12d 473 |
. . . 4
|
| 37 | 30, 36 | bibi12d 235 |
. . 3
|
| 38 | 25, 37 | sylibrd 169 |
. 2
|
| 39 | 38 | ralrimdvva 2582 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-14 2170 ax-ext 2178 ax-sep 4151 ax-pow 4207 ax-pr 4242 |
| This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-nf 1475 df-sb 1777 df-eu 2048 df-mo 2049 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-ral 2480 df-rex 2481 df-v 2765 df-sbc 2990 df-un 3161 df-in 3163 df-ss 3170 df-pw 3607 df-sn 3628 df-pr 3629 df-op 3631 df-uni 3840 df-br 4034 df-opab 4095 df-id 4328 df-xp 4669 df-rel 4670 df-cnv 4671 df-co 4672 df-dm 4673 df-rn 4674 df-iota 5219 df-fun 5260 df-fn 5261 df-f 5262 df-f1 5263 df-f1o 5265 df-fv 5266 df-isom 5267 |
| This theorem is referenced by: isoti 7073 |
| Copyright terms: Public domain | W3C validator |