Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > isotilem | Unicode version |
Description: Lemma for isoti 6984. (Contributed by Jim Kingdon, 26-Nov-2021.) |
Ref | Expression |
---|---|
isotilem |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | isof1o 5786 | . . . . . 6 | |
2 | f1of 5442 | . . . . . 6 | |
3 | ffvelcdm 5629 | . . . . . . . 8 | |
4 | 3 | ex 114 | . . . . . . 7 |
5 | ffvelcdm 5629 | . . . . . . . 8 | |
6 | 5 | ex 114 | . . . . . . 7 |
7 | 4, 6 | anim12d 333 | . . . . . 6 |
8 | 1, 2, 7 | 3syl 17 | . . . . 5 |
9 | 8 | imp 123 | . . . 4 |
10 | eqeq1 2177 | . . . . . 6 | |
11 | breq1 3992 | . . . . . . . 8 | |
12 | 11 | notbid 662 | . . . . . . 7 |
13 | breq2 3993 | . . . . . . . 8 | |
14 | 13 | notbid 662 | . . . . . . 7 |
15 | 12, 14 | anbi12d 470 | . . . . . 6 |
16 | 10, 15 | bibi12d 234 | . . . . 5 |
17 | eqeq2 2180 | . . . . . 6 | |
18 | breq2 3993 | . . . . . . . 8 | |
19 | 18 | notbid 662 | . . . . . . 7 |
20 | breq1 3992 | . . . . . . . 8 | |
21 | 20 | notbid 662 | . . . . . . 7 |
22 | 19, 21 | anbi12d 470 | . . . . . 6 |
23 | 17, 22 | bibi12d 234 | . . . . 5 |
24 | 16, 23 | rspc2v 2847 | . . . 4 |
25 | 9, 24 | syl 14 | . . 3 |
26 | f1of1 5441 | . . . . . . 7 | |
27 | 1, 26 | syl 14 | . . . . . 6 |
28 | f1fveq 5751 | . . . . . 6 | |
29 | 27, 28 | sylan 281 | . . . . 5 |
30 | 29 | bicomd 140 | . . . 4 |
31 | isorel 5787 | . . . . . 6 | |
32 | 31 | notbid 662 | . . . . 5 |
33 | isorel 5787 | . . . . . . 7 | |
34 | 33 | notbid 662 | . . . . . 6 |
35 | 34 | ancom2s 561 | . . . . 5 |
36 | 32, 35 | anbi12d 470 | . . . 4 |
37 | 30, 36 | bibi12d 234 | . . 3 |
38 | 25, 37 | sylibrd 168 | . 2 |
39 | 38 | ralrimdvva 2555 | 1 |
Colors of variables: wff set class |
Syntax hints: wn 3 wi 4 wa 103 wb 104 wceq 1348 wcel 2141 wral 2448 class class class wbr 3989 wf 5194 wf1 5195 wf1o 5197 cfv 5198 wiso 5199 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 609 ax-in2 610 ax-io 704 ax-5 1440 ax-7 1441 ax-gen 1442 ax-ie1 1486 ax-ie2 1487 ax-8 1497 ax-10 1498 ax-11 1499 ax-i12 1500 ax-bndl 1502 ax-4 1503 ax-17 1519 ax-i9 1523 ax-ial 1527 ax-i5r 1528 ax-14 2144 ax-ext 2152 ax-sep 4107 ax-pow 4160 ax-pr 4194 |
This theorem depends on definitions: df-bi 116 df-3an 975 df-tru 1351 df-nf 1454 df-sb 1756 df-eu 2022 df-mo 2023 df-clab 2157 df-cleq 2163 df-clel 2166 df-nfc 2301 df-ral 2453 df-rex 2454 df-v 2732 df-sbc 2956 df-un 3125 df-in 3127 df-ss 3134 df-pw 3568 df-sn 3589 df-pr 3590 df-op 3592 df-uni 3797 df-br 3990 df-opab 4051 df-id 4278 df-xp 4617 df-rel 4618 df-cnv 4619 df-co 4620 df-dm 4621 df-rn 4622 df-iota 5160 df-fun 5200 df-fn 5201 df-f 5202 df-f1 5203 df-f1o 5205 df-fv 5206 df-isom 5207 |
This theorem is referenced by: isoti 6984 |
Copyright terms: Public domain | W3C validator |