Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > isotilem | Unicode version |
Description: Lemma for isoti 6972. (Contributed by Jim Kingdon, 26-Nov-2021.) |
Ref | Expression |
---|---|
isotilem |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | isof1o 5775 | . . . . . 6 | |
2 | f1of 5432 | . . . . . 6 | |
3 | ffvelrn 5618 | . . . . . . . 8 | |
4 | 3 | ex 114 | . . . . . . 7 |
5 | ffvelrn 5618 | . . . . . . . 8 | |
6 | 5 | ex 114 | . . . . . . 7 |
7 | 4, 6 | anim12d 333 | . . . . . 6 |
8 | 1, 2, 7 | 3syl 17 | . . . . 5 |
9 | 8 | imp 123 | . . . 4 |
10 | eqeq1 2172 | . . . . . 6 | |
11 | breq1 3985 | . . . . . . . 8 | |
12 | 11 | notbid 657 | . . . . . . 7 |
13 | breq2 3986 | . . . . . . . 8 | |
14 | 13 | notbid 657 | . . . . . . 7 |
15 | 12, 14 | anbi12d 465 | . . . . . 6 |
16 | 10, 15 | bibi12d 234 | . . . . 5 |
17 | eqeq2 2175 | . . . . . 6 | |
18 | breq2 3986 | . . . . . . . 8 | |
19 | 18 | notbid 657 | . . . . . . 7 |
20 | breq1 3985 | . . . . . . . 8 | |
21 | 20 | notbid 657 | . . . . . . 7 |
22 | 19, 21 | anbi12d 465 | . . . . . 6 |
23 | 17, 22 | bibi12d 234 | . . . . 5 |
24 | 16, 23 | rspc2v 2843 | . . . 4 |
25 | 9, 24 | syl 14 | . . 3 |
26 | f1of1 5431 | . . . . . . 7 | |
27 | 1, 26 | syl 14 | . . . . . 6 |
28 | f1fveq 5740 | . . . . . 6 | |
29 | 27, 28 | sylan 281 | . . . . 5 |
30 | 29 | bicomd 140 | . . . 4 |
31 | isorel 5776 | . . . . . 6 | |
32 | 31 | notbid 657 | . . . . 5 |
33 | isorel 5776 | . . . . . . 7 | |
34 | 33 | notbid 657 | . . . . . 6 |
35 | 34 | ancom2s 556 | . . . . 5 |
36 | 32, 35 | anbi12d 465 | . . . 4 |
37 | 30, 36 | bibi12d 234 | . . 3 |
38 | 25, 37 | sylibrd 168 | . 2 |
39 | 38 | ralrimdvva 2551 | 1 |
Colors of variables: wff set class |
Syntax hints: wn 3 wi 4 wa 103 wb 104 wceq 1343 wcel 2136 wral 2444 class class class wbr 3982 wf 5184 wf1 5185 wf1o 5187 cfv 5188 wiso 5189 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 604 ax-in2 605 ax-io 699 ax-5 1435 ax-7 1436 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-8 1492 ax-10 1493 ax-11 1494 ax-i12 1495 ax-bndl 1497 ax-4 1498 ax-17 1514 ax-i9 1518 ax-ial 1522 ax-i5r 1523 ax-14 2139 ax-ext 2147 ax-sep 4100 ax-pow 4153 ax-pr 4187 |
This theorem depends on definitions: df-bi 116 df-3an 970 df-tru 1346 df-nf 1449 df-sb 1751 df-eu 2017 df-mo 2018 df-clab 2152 df-cleq 2158 df-clel 2161 df-nfc 2297 df-ral 2449 df-rex 2450 df-v 2728 df-sbc 2952 df-un 3120 df-in 3122 df-ss 3129 df-pw 3561 df-sn 3582 df-pr 3583 df-op 3585 df-uni 3790 df-br 3983 df-opab 4044 df-id 4271 df-xp 4610 df-rel 4611 df-cnv 4612 df-co 4613 df-dm 4614 df-rn 4615 df-iota 5153 df-fun 5190 df-fn 5191 df-f 5192 df-f1 5193 df-f1o 5195 df-fv 5196 df-isom 5197 |
This theorem is referenced by: isoti 6972 |
Copyright terms: Public domain | W3C validator |