ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  mulsub Unicode version

Theorem mulsub 8320
Description: Product of two differences. (Contributed by NM, 14-Jan-2006.)
Assertion
Ref Expression
mulsub  |-  ( ( ( A  e.  CC  /\  B  e.  CC )  /\  ( C  e.  CC  /\  D  e.  CC ) )  -> 
( ( A  -  B )  x.  ( C  -  D )
)  =  ( ( ( A  x.  C
)  +  ( D  x.  B ) )  -  ( ( A  x.  D )  +  ( C  x.  B
) ) ) )

Proof of Theorem mulsub
StepHypRef Expression
1 negsub 8167 . . 3  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( A  +  -u B )  =  ( A  -  B ) )
2 negsub 8167 . . 3  |-  ( ( C  e.  CC  /\  D  e.  CC )  ->  ( C  +  -u D )  =  ( C  -  D ) )
31, 2oveqan12d 5872 . 2  |-  ( ( ( A  e.  CC  /\  B  e.  CC )  /\  ( C  e.  CC  /\  D  e.  CC ) )  -> 
( ( A  +  -u B )  x.  ( C  +  -u D ) )  =  ( ( A  -  B )  x.  ( C  -  D ) ) )
4 negcl 8119 . . . 4  |-  ( B  e.  CC  ->  -u B  e.  CC )
5 negcl 8119 . . . . 5  |-  ( D  e.  CC  ->  -u D  e.  CC )
6 muladd 8303 . . . . 5  |-  ( ( ( A  e.  CC  /\  -u B  e.  CC )  /\  ( C  e.  CC  /\  -u D  e.  CC ) )  -> 
( ( A  +  -u B )  x.  ( C  +  -u D ) )  =  ( ( ( A  x.  C
)  +  ( -u D  x.  -u B ) )  +  ( ( A  x.  -u D
)  +  ( C  x.  -u B ) ) ) )
75, 6sylanr2 403 . . . 4  |-  ( ( ( A  e.  CC  /\  -u B  e.  CC )  /\  ( C  e.  CC  /\  D  e.  CC ) )  -> 
( ( A  +  -u B )  x.  ( C  +  -u D ) )  =  ( ( ( A  x.  C
)  +  ( -u D  x.  -u B ) )  +  ( ( A  x.  -u D
)  +  ( C  x.  -u B ) ) ) )
84, 7sylanl2 401 . . 3  |-  ( ( ( A  e.  CC  /\  B  e.  CC )  /\  ( C  e.  CC  /\  D  e.  CC ) )  -> 
( ( A  +  -u B )  x.  ( C  +  -u D ) )  =  ( ( ( A  x.  C
)  +  ( -u D  x.  -u B ) )  +  ( ( A  x.  -u D
)  +  ( C  x.  -u B ) ) ) )
9 mul2neg 8317 . . . . . . 7  |-  ( ( D  e.  CC  /\  B  e.  CC )  ->  ( -u D  x.  -u B )  =  ( D  x.  B ) )
109ancoms 266 . . . . . 6  |-  ( ( B  e.  CC  /\  D  e.  CC )  ->  ( -u D  x.  -u B )  =  ( D  x.  B ) )
1110oveq2d 5869 . . . . 5  |-  ( ( B  e.  CC  /\  D  e.  CC )  ->  ( ( A  x.  C )  +  (
-u D  x.  -u B
) )  =  ( ( A  x.  C
)  +  ( D  x.  B ) ) )
1211ad2ant2l 505 . . . 4  |-  ( ( ( A  e.  CC  /\  B  e.  CC )  /\  ( C  e.  CC  /\  D  e.  CC ) )  -> 
( ( A  x.  C )  +  (
-u D  x.  -u B
) )  =  ( ( A  x.  C
)  +  ( D  x.  B ) ) )
13 mulneg2 8315 . . . . . . . 8  |-  ( ( A  e.  CC  /\  D  e.  CC )  ->  ( A  x.  -u D
)  =  -u ( A  x.  D )
)
14 mulneg2 8315 . . . . . . . 8  |-  ( ( C  e.  CC  /\  B  e.  CC )  ->  ( C  x.  -u B
)  =  -u ( C  x.  B )
)
1513, 14oveqan12d 5872 . . . . . . 7  |-  ( ( ( A  e.  CC  /\  D  e.  CC )  /\  ( C  e.  CC  /\  B  e.  CC ) )  -> 
( ( A  x.  -u D )  +  ( C  x.  -u B
) )  =  (
-u ( A  x.  D )  +  -u ( C  x.  B
) ) )
16 mulcl 7901 . . . . . . . 8  |-  ( ( A  e.  CC  /\  D  e.  CC )  ->  ( A  x.  D
)  e.  CC )
17 mulcl 7901 . . . . . . . 8  |-  ( ( C  e.  CC  /\  B  e.  CC )  ->  ( C  x.  B
)  e.  CC )
18 negdi 8176 . . . . . . . 8  |-  ( ( ( A  x.  D
)  e.  CC  /\  ( C  x.  B
)  e.  CC )  ->  -u ( ( A  x.  D )  +  ( C  x.  B
) )  =  (
-u ( A  x.  D )  +  -u ( C  x.  B
) ) )
1916, 17, 18syl2an 287 . . . . . . 7  |-  ( ( ( A  e.  CC  /\  D  e.  CC )  /\  ( C  e.  CC  /\  B  e.  CC ) )  ->  -u ( ( A  x.  D )  +  ( C  x.  B ) )  =  ( -u ( A  x.  D
)  +  -u ( C  x.  B )
) )
2015, 19eqtr4d 2206 . . . . . 6  |-  ( ( ( A  e.  CC  /\  D  e.  CC )  /\  ( C  e.  CC  /\  B  e.  CC ) )  -> 
( ( A  x.  -u D )  +  ( C  x.  -u B
) )  =  -u ( ( A  x.  D )  +  ( C  x.  B ) ) )
2120ancom2s 561 . . . . 5  |-  ( ( ( A  e.  CC  /\  D  e.  CC )  /\  ( B  e.  CC  /\  C  e.  CC ) )  -> 
( ( A  x.  -u D )  +  ( C  x.  -u B
) )  =  -u ( ( A  x.  D )  +  ( C  x.  B ) ) )
2221an42s 584 . . . 4  |-  ( ( ( A  e.  CC  /\  B  e.  CC )  /\  ( C  e.  CC  /\  D  e.  CC ) )  -> 
( ( A  x.  -u D )  +  ( C  x.  -u B
) )  =  -u ( ( A  x.  D )  +  ( C  x.  B ) ) )
2312, 22oveq12d 5871 . . 3  |-  ( ( ( A  e.  CC  /\  B  e.  CC )  /\  ( C  e.  CC  /\  D  e.  CC ) )  -> 
( ( ( A  x.  C )  +  ( -u D  x.  -u B ) )  +  ( ( A  x.  -u D )  +  ( C  x.  -u B
) ) )  =  ( ( ( A  x.  C )  +  ( D  x.  B
) )  +  -u ( ( A  x.  D )  +  ( C  x.  B ) ) ) )
24 mulcl 7901 . . . . . 6  |-  ( ( A  e.  CC  /\  C  e.  CC )  ->  ( A  x.  C
)  e.  CC )
25 mulcl 7901 . . . . . . 7  |-  ( ( D  e.  CC  /\  B  e.  CC )  ->  ( D  x.  B
)  e.  CC )
2625ancoms 266 . . . . . 6  |-  ( ( B  e.  CC  /\  D  e.  CC )  ->  ( D  x.  B
)  e.  CC )
27 addcl 7899 . . . . . 6  |-  ( ( ( A  x.  C
)  e.  CC  /\  ( D  x.  B
)  e.  CC )  ->  ( ( A  x.  C )  +  ( D  x.  B
) )  e.  CC )
2824, 26, 27syl2an 287 . . . . 5  |-  ( ( ( A  e.  CC  /\  C  e.  CC )  /\  ( B  e.  CC  /\  D  e.  CC ) )  -> 
( ( A  x.  C )  +  ( D  x.  B ) )  e.  CC )
2928an4s 583 . . . 4  |-  ( ( ( A  e.  CC  /\  B  e.  CC )  /\  ( C  e.  CC  /\  D  e.  CC ) )  -> 
( ( A  x.  C )  +  ( D  x.  B ) )  e.  CC )
3017ancoms 266 . . . . . 6  |-  ( ( B  e.  CC  /\  C  e.  CC )  ->  ( C  x.  B
)  e.  CC )
31 addcl 7899 . . . . . 6  |-  ( ( ( A  x.  D
)  e.  CC  /\  ( C  x.  B
)  e.  CC )  ->  ( ( A  x.  D )  +  ( C  x.  B
) )  e.  CC )
3216, 30, 31syl2an 287 . . . . 5  |-  ( ( ( A  e.  CC  /\  D  e.  CC )  /\  ( B  e.  CC  /\  C  e.  CC ) )  -> 
( ( A  x.  D )  +  ( C  x.  B ) )  e.  CC )
3332an42s 584 . . . 4  |-  ( ( ( A  e.  CC  /\  B  e.  CC )  /\  ( C  e.  CC  /\  D  e.  CC ) )  -> 
( ( A  x.  D )  +  ( C  x.  B ) )  e.  CC )
3429, 33negsubd 8236 . . 3  |-  ( ( ( A  e.  CC  /\  B  e.  CC )  /\  ( C  e.  CC  /\  D  e.  CC ) )  -> 
( ( ( A  x.  C )  +  ( D  x.  B
) )  +  -u ( ( A  x.  D )  +  ( C  x.  B ) ) )  =  ( ( ( A  x.  C )  +  ( D  x.  B ) )  -  ( ( A  x.  D )  +  ( C  x.  B ) ) ) )
358, 23, 343eqtrd 2207 . 2  |-  ( ( ( A  e.  CC  /\  B  e.  CC )  /\  ( C  e.  CC  /\  D  e.  CC ) )  -> 
( ( A  +  -u B )  x.  ( C  +  -u D ) )  =  ( ( ( A  x.  C
)  +  ( D  x.  B ) )  -  ( ( A  x.  D )  +  ( C  x.  B
) ) ) )
363, 35eqtr3d 2205 1  |-  ( ( ( A  e.  CC  /\  B  e.  CC )  /\  ( C  e.  CC  /\  D  e.  CC ) )  -> 
( ( A  -  B )  x.  ( C  -  D )
)  =  ( ( ( A  x.  C
)  +  ( D  x.  B ) )  -  ( ( A  x.  D )  +  ( C  x.  B
) ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103    = wceq 1348    e. wcel 2141  (class class class)co 5853   CCcc 7772    + caddc 7777    x. cmul 7779    - cmin 8090   -ucneg 8091
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 609  ax-in2 610  ax-io 704  ax-5 1440  ax-7 1441  ax-gen 1442  ax-ie1 1486  ax-ie2 1487  ax-8 1497  ax-10 1498  ax-11 1499  ax-i12 1500  ax-bndl 1502  ax-4 1503  ax-17 1519  ax-i9 1523  ax-ial 1527  ax-i5r 1528  ax-14 2144  ax-ext 2152  ax-sep 4107  ax-pow 4160  ax-pr 4194  ax-setind 4521  ax-resscn 7866  ax-1cn 7867  ax-icn 7869  ax-addcl 7870  ax-addrcl 7871  ax-mulcl 7872  ax-addcom 7874  ax-mulcom 7875  ax-addass 7876  ax-distr 7878  ax-i2m1 7879  ax-0id 7882  ax-rnegex 7883  ax-cnre 7885
This theorem depends on definitions:  df-bi 116  df-3an 975  df-tru 1351  df-fal 1354  df-nf 1454  df-sb 1756  df-eu 2022  df-mo 2023  df-clab 2157  df-cleq 2163  df-clel 2166  df-nfc 2301  df-ne 2341  df-ral 2453  df-rex 2454  df-reu 2455  df-rab 2457  df-v 2732  df-sbc 2956  df-dif 3123  df-un 3125  df-in 3127  df-ss 3134  df-pw 3568  df-sn 3589  df-pr 3590  df-op 3592  df-uni 3797  df-br 3990  df-opab 4051  df-id 4278  df-xp 4617  df-rel 4618  df-cnv 4619  df-co 4620  df-dm 4621  df-iota 5160  df-fun 5200  df-fv 5206  df-riota 5809  df-ov 5856  df-oprab 5857  df-mpo 5858  df-sub 8092  df-neg 8093
This theorem is referenced by:  mulsubd  8336  muleqadd  8586  addltmul  9114  sqabssub  11020
  Copyright terms: Public domain W3C validator