ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  mulsub Unicode version

Theorem mulsub 8388
Description: Product of two differences. (Contributed by NM, 14-Jan-2006.)
Assertion
Ref Expression
mulsub  |-  ( ( ( A  e.  CC  /\  B  e.  CC )  /\  ( C  e.  CC  /\  D  e.  CC ) )  -> 
( ( A  -  B )  x.  ( C  -  D )
)  =  ( ( ( A  x.  C
)  +  ( D  x.  B ) )  -  ( ( A  x.  D )  +  ( C  x.  B
) ) ) )

Proof of Theorem mulsub
StepHypRef Expression
1 negsub 8235 . . 3  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( A  +  -u B )  =  ( A  -  B ) )
2 negsub 8235 . . 3  |-  ( ( C  e.  CC  /\  D  e.  CC )  ->  ( C  +  -u D )  =  ( C  -  D ) )
31, 2oveqan12d 5915 . 2  |-  ( ( ( A  e.  CC  /\  B  e.  CC )  /\  ( C  e.  CC  /\  D  e.  CC ) )  -> 
( ( A  +  -u B )  x.  ( C  +  -u D ) )  =  ( ( A  -  B )  x.  ( C  -  D ) ) )
4 negcl 8187 . . . 4  |-  ( B  e.  CC  ->  -u B  e.  CC )
5 negcl 8187 . . . . 5  |-  ( D  e.  CC  ->  -u D  e.  CC )
6 muladd 8371 . . . . 5  |-  ( ( ( A  e.  CC  /\  -u B  e.  CC )  /\  ( C  e.  CC  /\  -u D  e.  CC ) )  -> 
( ( A  +  -u B )  x.  ( C  +  -u D ) )  =  ( ( ( A  x.  C
)  +  ( -u D  x.  -u B ) )  +  ( ( A  x.  -u D
)  +  ( C  x.  -u B ) ) ) )
75, 6sylanr2 405 . . . 4  |-  ( ( ( A  e.  CC  /\  -u B  e.  CC )  /\  ( C  e.  CC  /\  D  e.  CC ) )  -> 
( ( A  +  -u B )  x.  ( C  +  -u D ) )  =  ( ( ( A  x.  C
)  +  ( -u D  x.  -u B ) )  +  ( ( A  x.  -u D
)  +  ( C  x.  -u B ) ) ) )
84, 7sylanl2 403 . . 3  |-  ( ( ( A  e.  CC  /\  B  e.  CC )  /\  ( C  e.  CC  /\  D  e.  CC ) )  -> 
( ( A  +  -u B )  x.  ( C  +  -u D ) )  =  ( ( ( A  x.  C
)  +  ( -u D  x.  -u B ) )  +  ( ( A  x.  -u D
)  +  ( C  x.  -u B ) ) ) )
9 mul2neg 8385 . . . . . . 7  |-  ( ( D  e.  CC  /\  B  e.  CC )  ->  ( -u D  x.  -u B )  =  ( D  x.  B ) )
109ancoms 268 . . . . . 6  |-  ( ( B  e.  CC  /\  D  e.  CC )  ->  ( -u D  x.  -u B )  =  ( D  x.  B ) )
1110oveq2d 5912 . . . . 5  |-  ( ( B  e.  CC  /\  D  e.  CC )  ->  ( ( A  x.  C )  +  (
-u D  x.  -u B
) )  =  ( ( A  x.  C
)  +  ( D  x.  B ) ) )
1211ad2ant2l 508 . . . 4  |-  ( ( ( A  e.  CC  /\  B  e.  CC )  /\  ( C  e.  CC  /\  D  e.  CC ) )  -> 
( ( A  x.  C )  +  (
-u D  x.  -u B
) )  =  ( ( A  x.  C
)  +  ( D  x.  B ) ) )
13 mulneg2 8383 . . . . . . . 8  |-  ( ( A  e.  CC  /\  D  e.  CC )  ->  ( A  x.  -u D
)  =  -u ( A  x.  D )
)
14 mulneg2 8383 . . . . . . . 8  |-  ( ( C  e.  CC  /\  B  e.  CC )  ->  ( C  x.  -u B
)  =  -u ( C  x.  B )
)
1513, 14oveqan12d 5915 . . . . . . 7  |-  ( ( ( A  e.  CC  /\  D  e.  CC )  /\  ( C  e.  CC  /\  B  e.  CC ) )  -> 
( ( A  x.  -u D )  +  ( C  x.  -u B
) )  =  (
-u ( A  x.  D )  +  -u ( C  x.  B
) ) )
16 mulcl 7968 . . . . . . . 8  |-  ( ( A  e.  CC  /\  D  e.  CC )  ->  ( A  x.  D
)  e.  CC )
17 mulcl 7968 . . . . . . . 8  |-  ( ( C  e.  CC  /\  B  e.  CC )  ->  ( C  x.  B
)  e.  CC )
18 negdi 8244 . . . . . . . 8  |-  ( ( ( A  x.  D
)  e.  CC  /\  ( C  x.  B
)  e.  CC )  ->  -u ( ( A  x.  D )  +  ( C  x.  B
) )  =  (
-u ( A  x.  D )  +  -u ( C  x.  B
) ) )
1916, 17, 18syl2an 289 . . . . . . 7  |-  ( ( ( A  e.  CC  /\  D  e.  CC )  /\  ( C  e.  CC  /\  B  e.  CC ) )  ->  -u ( ( A  x.  D )  +  ( C  x.  B ) )  =  ( -u ( A  x.  D
)  +  -u ( C  x.  B )
) )
2015, 19eqtr4d 2225 . . . . . 6  |-  ( ( ( A  e.  CC  /\  D  e.  CC )  /\  ( C  e.  CC  /\  B  e.  CC ) )  -> 
( ( A  x.  -u D )  +  ( C  x.  -u B
) )  =  -u ( ( A  x.  D )  +  ( C  x.  B ) ) )
2120ancom2s 566 . . . . 5  |-  ( ( ( A  e.  CC  /\  D  e.  CC )  /\  ( B  e.  CC  /\  C  e.  CC ) )  -> 
( ( A  x.  -u D )  +  ( C  x.  -u B
) )  =  -u ( ( A  x.  D )  +  ( C  x.  B ) ) )
2221an42s 589 . . . 4  |-  ( ( ( A  e.  CC  /\  B  e.  CC )  /\  ( C  e.  CC  /\  D  e.  CC ) )  -> 
( ( A  x.  -u D )  +  ( C  x.  -u B
) )  =  -u ( ( A  x.  D )  +  ( C  x.  B ) ) )
2312, 22oveq12d 5914 . . 3  |-  ( ( ( A  e.  CC  /\  B  e.  CC )  /\  ( C  e.  CC  /\  D  e.  CC ) )  -> 
( ( ( A  x.  C )  +  ( -u D  x.  -u B ) )  +  ( ( A  x.  -u D )  +  ( C  x.  -u B
) ) )  =  ( ( ( A  x.  C )  +  ( D  x.  B
) )  +  -u ( ( A  x.  D )  +  ( C  x.  B ) ) ) )
24 mulcl 7968 . . . . . 6  |-  ( ( A  e.  CC  /\  C  e.  CC )  ->  ( A  x.  C
)  e.  CC )
25 mulcl 7968 . . . . . . 7  |-  ( ( D  e.  CC  /\  B  e.  CC )  ->  ( D  x.  B
)  e.  CC )
2625ancoms 268 . . . . . 6  |-  ( ( B  e.  CC  /\  D  e.  CC )  ->  ( D  x.  B
)  e.  CC )
27 addcl 7966 . . . . . 6  |-  ( ( ( A  x.  C
)  e.  CC  /\  ( D  x.  B
)  e.  CC )  ->  ( ( A  x.  C )  +  ( D  x.  B
) )  e.  CC )
2824, 26, 27syl2an 289 . . . . 5  |-  ( ( ( A  e.  CC  /\  C  e.  CC )  /\  ( B  e.  CC  /\  D  e.  CC ) )  -> 
( ( A  x.  C )  +  ( D  x.  B ) )  e.  CC )
2928an4s 588 . . . 4  |-  ( ( ( A  e.  CC  /\  B  e.  CC )  /\  ( C  e.  CC  /\  D  e.  CC ) )  -> 
( ( A  x.  C )  +  ( D  x.  B ) )  e.  CC )
3017ancoms 268 . . . . . 6  |-  ( ( B  e.  CC  /\  C  e.  CC )  ->  ( C  x.  B
)  e.  CC )
31 addcl 7966 . . . . . 6  |-  ( ( ( A  x.  D
)  e.  CC  /\  ( C  x.  B
)  e.  CC )  ->  ( ( A  x.  D )  +  ( C  x.  B
) )  e.  CC )
3216, 30, 31syl2an 289 . . . . 5  |-  ( ( ( A  e.  CC  /\  D  e.  CC )  /\  ( B  e.  CC  /\  C  e.  CC ) )  -> 
( ( A  x.  D )  +  ( C  x.  B ) )  e.  CC )
3332an42s 589 . . . 4  |-  ( ( ( A  e.  CC  /\  B  e.  CC )  /\  ( C  e.  CC  /\  D  e.  CC ) )  -> 
( ( A  x.  D )  +  ( C  x.  B ) )  e.  CC )
3429, 33negsubd 8304 . . 3  |-  ( ( ( A  e.  CC  /\  B  e.  CC )  /\  ( C  e.  CC  /\  D  e.  CC ) )  -> 
( ( ( A  x.  C )  +  ( D  x.  B
) )  +  -u ( ( A  x.  D )  +  ( C  x.  B ) ) )  =  ( ( ( A  x.  C )  +  ( D  x.  B ) )  -  ( ( A  x.  D )  +  ( C  x.  B ) ) ) )
358, 23, 343eqtrd 2226 . 2  |-  ( ( ( A  e.  CC  /\  B  e.  CC )  /\  ( C  e.  CC  /\  D  e.  CC ) )  -> 
( ( A  +  -u B )  x.  ( C  +  -u D ) )  =  ( ( ( A  x.  C
)  +  ( D  x.  B ) )  -  ( ( A  x.  D )  +  ( C  x.  B
) ) ) )
363, 35eqtr3d 2224 1  |-  ( ( ( A  e.  CC  /\  B  e.  CC )  /\  ( C  e.  CC  /\  D  e.  CC ) )  -> 
( ( A  -  B )  x.  ( C  -  D )
)  =  ( ( ( A  x.  C
)  +  ( D  x.  B ) )  -  ( ( A  x.  D )  +  ( C  x.  B
) ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    = wceq 1364    e. wcel 2160  (class class class)co 5896   CCcc 7839    + caddc 7844    x. cmul 7846    - cmin 8158   -ucneg 8159
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-14 2163  ax-ext 2171  ax-sep 4136  ax-pow 4192  ax-pr 4227  ax-setind 4554  ax-resscn 7933  ax-1cn 7934  ax-icn 7936  ax-addcl 7937  ax-addrcl 7938  ax-mulcl 7939  ax-addcom 7941  ax-mulcom 7942  ax-addass 7943  ax-distr 7945  ax-i2m1 7946  ax-0id 7949  ax-rnegex 7950  ax-cnre 7952
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1472  df-sb 1774  df-eu 2041  df-mo 2042  df-clab 2176  df-cleq 2182  df-clel 2185  df-nfc 2321  df-ne 2361  df-ral 2473  df-rex 2474  df-reu 2475  df-rab 2477  df-v 2754  df-sbc 2978  df-dif 3146  df-un 3148  df-in 3150  df-ss 3157  df-pw 3592  df-sn 3613  df-pr 3614  df-op 3616  df-uni 3825  df-br 4019  df-opab 4080  df-id 4311  df-xp 4650  df-rel 4651  df-cnv 4652  df-co 4653  df-dm 4654  df-iota 5196  df-fun 5237  df-fv 5243  df-riota 5852  df-ov 5899  df-oprab 5900  df-mpo 5901  df-sub 8160  df-neg 8161
This theorem is referenced by:  mulsubd  8404  muleqadd  8655  addltmul  9185  sqabssub  11097
  Copyright terms: Public domain W3C validator