| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > mulsub | Unicode version | ||
| Description: Product of two differences. (Contributed by NM, 14-Jan-2006.) |
| Ref | Expression |
|---|---|
| mulsub |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | negsub 8322 |
. . 3
| |
| 2 | negsub 8322 |
. . 3
| |
| 3 | 1, 2 | oveqan12d 5965 |
. 2
|
| 4 | negcl 8274 |
. . . 4
| |
| 5 | negcl 8274 |
. . . . 5
| |
| 6 | muladd 8458 |
. . . . 5
| |
| 7 | 5, 6 | sylanr2 405 |
. . . 4
|
| 8 | 4, 7 | sylanl2 403 |
. . 3
|
| 9 | mul2neg 8472 |
. . . . . . 7
| |
| 10 | 9 | ancoms 268 |
. . . . . 6
|
| 11 | 10 | oveq2d 5962 |
. . . . 5
|
| 12 | 11 | ad2ant2l 508 |
. . . 4
|
| 13 | mulneg2 8470 |
. . . . . . . 8
| |
| 14 | mulneg2 8470 |
. . . . . . . 8
| |
| 15 | 13, 14 | oveqan12d 5965 |
. . . . . . 7
|
| 16 | mulcl 8054 |
. . . . . . . 8
| |
| 17 | mulcl 8054 |
. . . . . . . 8
| |
| 18 | negdi 8331 |
. . . . . . . 8
| |
| 19 | 16, 17, 18 | syl2an 289 |
. . . . . . 7
|
| 20 | 15, 19 | eqtr4d 2241 |
. . . . . 6
|
| 21 | 20 | ancom2s 566 |
. . . . 5
|
| 22 | 21 | an42s 589 |
. . . 4
|
| 23 | 12, 22 | oveq12d 5964 |
. . 3
|
| 24 | mulcl 8054 |
. . . . . 6
| |
| 25 | mulcl 8054 |
. . . . . . 7
| |
| 26 | 25 | ancoms 268 |
. . . . . 6
|
| 27 | addcl 8052 |
. . . . . 6
| |
| 28 | 24, 26, 27 | syl2an 289 |
. . . . 5
|
| 29 | 28 | an4s 588 |
. . . 4
|
| 30 | 17 | ancoms 268 |
. . . . . 6
|
| 31 | addcl 8052 |
. . . . . 6
| |
| 32 | 16, 30, 31 | syl2an 289 |
. . . . 5
|
| 33 | 32 | an42s 589 |
. . . 4
|
| 34 | 29, 33 | negsubd 8391 |
. . 3
|
| 35 | 8, 23, 34 | 3eqtrd 2242 |
. 2
|
| 36 | 3, 35 | eqtr3d 2240 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 711 ax-5 1470 ax-7 1471 ax-gen 1472 ax-ie1 1516 ax-ie2 1517 ax-8 1527 ax-10 1528 ax-11 1529 ax-i12 1530 ax-bndl 1532 ax-4 1533 ax-17 1549 ax-i9 1553 ax-ial 1557 ax-i5r 1558 ax-14 2179 ax-ext 2187 ax-sep 4163 ax-pow 4219 ax-pr 4254 ax-setind 4586 ax-resscn 8019 ax-1cn 8020 ax-icn 8022 ax-addcl 8023 ax-addrcl 8024 ax-mulcl 8025 ax-addcom 8027 ax-mulcom 8028 ax-addass 8029 ax-distr 8031 ax-i2m1 8032 ax-0id 8035 ax-rnegex 8036 ax-cnre 8038 |
| This theorem depends on definitions: df-bi 117 df-3an 983 df-tru 1376 df-fal 1379 df-nf 1484 df-sb 1786 df-eu 2057 df-mo 2058 df-clab 2192 df-cleq 2198 df-clel 2201 df-nfc 2337 df-ne 2377 df-ral 2489 df-rex 2490 df-reu 2491 df-rab 2493 df-v 2774 df-sbc 2999 df-dif 3168 df-un 3170 df-in 3172 df-ss 3179 df-pw 3618 df-sn 3639 df-pr 3640 df-op 3642 df-uni 3851 df-br 4046 df-opab 4107 df-id 4341 df-xp 4682 df-rel 4683 df-cnv 4684 df-co 4685 df-dm 4686 df-iota 5233 df-fun 5274 df-fv 5280 df-riota 5901 df-ov 5949 df-oprab 5950 df-mpo 5951 df-sub 8247 df-neg 8248 |
| This theorem is referenced by: mulsubd 8491 muleqadd 8743 addltmul 9276 sqabssub 11400 |
| Copyright terms: Public domain | W3C validator |