| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > mulsub | Unicode version | ||
| Description: Product of two differences. (Contributed by NM, 14-Jan-2006.) |
| Ref | Expression |
|---|---|
| mulsub |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | negsub 8394 |
. . 3
| |
| 2 | negsub 8394 |
. . 3
| |
| 3 | 1, 2 | oveqan12d 6020 |
. 2
|
| 4 | negcl 8346 |
. . . 4
| |
| 5 | negcl 8346 |
. . . . 5
| |
| 6 | muladd 8530 |
. . . . 5
| |
| 7 | 5, 6 | sylanr2 405 |
. . . 4
|
| 8 | 4, 7 | sylanl2 403 |
. . 3
|
| 9 | mul2neg 8544 |
. . . . . . 7
| |
| 10 | 9 | ancoms 268 |
. . . . . 6
|
| 11 | 10 | oveq2d 6017 |
. . . . 5
|
| 12 | 11 | ad2ant2l 508 |
. . . 4
|
| 13 | mulneg2 8542 |
. . . . . . . 8
| |
| 14 | mulneg2 8542 |
. . . . . . . 8
| |
| 15 | 13, 14 | oveqan12d 6020 |
. . . . . . 7
|
| 16 | mulcl 8126 |
. . . . . . . 8
| |
| 17 | mulcl 8126 |
. . . . . . . 8
| |
| 18 | negdi 8403 |
. . . . . . . 8
| |
| 19 | 16, 17, 18 | syl2an 289 |
. . . . . . 7
|
| 20 | 15, 19 | eqtr4d 2265 |
. . . . . 6
|
| 21 | 20 | ancom2s 566 |
. . . . 5
|
| 22 | 21 | an42s 591 |
. . . 4
|
| 23 | 12, 22 | oveq12d 6019 |
. . 3
|
| 24 | mulcl 8126 |
. . . . . 6
| |
| 25 | mulcl 8126 |
. . . . . . 7
| |
| 26 | 25 | ancoms 268 |
. . . . . 6
|
| 27 | addcl 8124 |
. . . . . 6
| |
| 28 | 24, 26, 27 | syl2an 289 |
. . . . 5
|
| 29 | 28 | an4s 590 |
. . . 4
|
| 30 | 17 | ancoms 268 |
. . . . . 6
|
| 31 | addcl 8124 |
. . . . . 6
| |
| 32 | 16, 30, 31 | syl2an 289 |
. . . . 5
|
| 33 | 32 | an42s 591 |
. . . 4
|
| 34 | 29, 33 | negsubd 8463 |
. . 3
|
| 35 | 8, 23, 34 | 3eqtrd 2266 |
. 2
|
| 36 | 3, 35 | eqtr3d 2264 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 617 ax-in2 618 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-14 2203 ax-ext 2211 ax-sep 4202 ax-pow 4258 ax-pr 4293 ax-setind 4629 ax-resscn 8091 ax-1cn 8092 ax-icn 8094 ax-addcl 8095 ax-addrcl 8096 ax-mulcl 8097 ax-addcom 8099 ax-mulcom 8100 ax-addass 8101 ax-distr 8103 ax-i2m1 8104 ax-0id 8107 ax-rnegex 8108 ax-cnre 8110 |
| This theorem depends on definitions: df-bi 117 df-3an 1004 df-tru 1398 df-fal 1401 df-nf 1507 df-sb 1809 df-eu 2080 df-mo 2081 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-ne 2401 df-ral 2513 df-rex 2514 df-reu 2515 df-rab 2517 df-v 2801 df-sbc 3029 df-dif 3199 df-un 3201 df-in 3203 df-ss 3210 df-pw 3651 df-sn 3672 df-pr 3673 df-op 3675 df-uni 3889 df-br 4084 df-opab 4146 df-id 4384 df-xp 4725 df-rel 4726 df-cnv 4727 df-co 4728 df-dm 4729 df-iota 5278 df-fun 5320 df-fv 5326 df-riota 5954 df-ov 6004 df-oprab 6005 df-mpo 6006 df-sub 8319 df-neg 8320 |
| This theorem is referenced by: mulsubd 8563 muleqadd 8815 addltmul 9348 sqabssub 11567 |
| Copyright terms: Public domain | W3C validator |