ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  mulsub Unicode version

Theorem mulsub 8360
Description: Product of two differences. (Contributed by NM, 14-Jan-2006.)
Assertion
Ref Expression
mulsub  |-  ( ( ( A  e.  CC  /\  B  e.  CC )  /\  ( C  e.  CC  /\  D  e.  CC ) )  -> 
( ( A  -  B )  x.  ( C  -  D )
)  =  ( ( ( A  x.  C
)  +  ( D  x.  B ) )  -  ( ( A  x.  D )  +  ( C  x.  B
) ) ) )

Proof of Theorem mulsub
StepHypRef Expression
1 negsub 8207 . . 3  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( A  +  -u B )  =  ( A  -  B ) )
2 negsub 8207 . . 3  |-  ( ( C  e.  CC  /\  D  e.  CC )  ->  ( C  +  -u D )  =  ( C  -  D ) )
31, 2oveqan12d 5896 . 2  |-  ( ( ( A  e.  CC  /\  B  e.  CC )  /\  ( C  e.  CC  /\  D  e.  CC ) )  -> 
( ( A  +  -u B )  x.  ( C  +  -u D ) )  =  ( ( A  -  B )  x.  ( C  -  D ) ) )
4 negcl 8159 . . . 4  |-  ( B  e.  CC  ->  -u B  e.  CC )
5 negcl 8159 . . . . 5  |-  ( D  e.  CC  ->  -u D  e.  CC )
6 muladd 8343 . . . . 5  |-  ( ( ( A  e.  CC  /\  -u B  e.  CC )  /\  ( C  e.  CC  /\  -u D  e.  CC ) )  -> 
( ( A  +  -u B )  x.  ( C  +  -u D ) )  =  ( ( ( A  x.  C
)  +  ( -u D  x.  -u B ) )  +  ( ( A  x.  -u D
)  +  ( C  x.  -u B ) ) ) )
75, 6sylanr2 405 . . . 4  |-  ( ( ( A  e.  CC  /\  -u B  e.  CC )  /\  ( C  e.  CC  /\  D  e.  CC ) )  -> 
( ( A  +  -u B )  x.  ( C  +  -u D ) )  =  ( ( ( A  x.  C
)  +  ( -u D  x.  -u B ) )  +  ( ( A  x.  -u D
)  +  ( C  x.  -u B ) ) ) )
84, 7sylanl2 403 . . 3  |-  ( ( ( A  e.  CC  /\  B  e.  CC )  /\  ( C  e.  CC  /\  D  e.  CC ) )  -> 
( ( A  +  -u B )  x.  ( C  +  -u D ) )  =  ( ( ( A  x.  C
)  +  ( -u D  x.  -u B ) )  +  ( ( A  x.  -u D
)  +  ( C  x.  -u B ) ) ) )
9 mul2neg 8357 . . . . . . 7  |-  ( ( D  e.  CC  /\  B  e.  CC )  ->  ( -u D  x.  -u B )  =  ( D  x.  B ) )
109ancoms 268 . . . . . 6  |-  ( ( B  e.  CC  /\  D  e.  CC )  ->  ( -u D  x.  -u B )  =  ( D  x.  B ) )
1110oveq2d 5893 . . . . 5  |-  ( ( B  e.  CC  /\  D  e.  CC )  ->  ( ( A  x.  C )  +  (
-u D  x.  -u B
) )  =  ( ( A  x.  C
)  +  ( D  x.  B ) ) )
1211ad2ant2l 508 . . . 4  |-  ( ( ( A  e.  CC  /\  B  e.  CC )  /\  ( C  e.  CC  /\  D  e.  CC ) )  -> 
( ( A  x.  C )  +  (
-u D  x.  -u B
) )  =  ( ( A  x.  C
)  +  ( D  x.  B ) ) )
13 mulneg2 8355 . . . . . . . 8  |-  ( ( A  e.  CC  /\  D  e.  CC )  ->  ( A  x.  -u D
)  =  -u ( A  x.  D )
)
14 mulneg2 8355 . . . . . . . 8  |-  ( ( C  e.  CC  /\  B  e.  CC )  ->  ( C  x.  -u B
)  =  -u ( C  x.  B )
)
1513, 14oveqan12d 5896 . . . . . . 7  |-  ( ( ( A  e.  CC  /\  D  e.  CC )  /\  ( C  e.  CC  /\  B  e.  CC ) )  -> 
( ( A  x.  -u D )  +  ( C  x.  -u B
) )  =  (
-u ( A  x.  D )  +  -u ( C  x.  B
) ) )
16 mulcl 7940 . . . . . . . 8  |-  ( ( A  e.  CC  /\  D  e.  CC )  ->  ( A  x.  D
)  e.  CC )
17 mulcl 7940 . . . . . . . 8  |-  ( ( C  e.  CC  /\  B  e.  CC )  ->  ( C  x.  B
)  e.  CC )
18 negdi 8216 . . . . . . . 8  |-  ( ( ( A  x.  D
)  e.  CC  /\  ( C  x.  B
)  e.  CC )  ->  -u ( ( A  x.  D )  +  ( C  x.  B
) )  =  (
-u ( A  x.  D )  +  -u ( C  x.  B
) ) )
1916, 17, 18syl2an 289 . . . . . . 7  |-  ( ( ( A  e.  CC  /\  D  e.  CC )  /\  ( C  e.  CC  /\  B  e.  CC ) )  ->  -u ( ( A  x.  D )  +  ( C  x.  B ) )  =  ( -u ( A  x.  D
)  +  -u ( C  x.  B )
) )
2015, 19eqtr4d 2213 . . . . . 6  |-  ( ( ( A  e.  CC  /\  D  e.  CC )  /\  ( C  e.  CC  /\  B  e.  CC ) )  -> 
( ( A  x.  -u D )  +  ( C  x.  -u B
) )  =  -u ( ( A  x.  D )  +  ( C  x.  B ) ) )
2120ancom2s 566 . . . . 5  |-  ( ( ( A  e.  CC  /\  D  e.  CC )  /\  ( B  e.  CC  /\  C  e.  CC ) )  -> 
( ( A  x.  -u D )  +  ( C  x.  -u B
) )  =  -u ( ( A  x.  D )  +  ( C  x.  B ) ) )
2221an42s 589 . . . 4  |-  ( ( ( A  e.  CC  /\  B  e.  CC )  /\  ( C  e.  CC  /\  D  e.  CC ) )  -> 
( ( A  x.  -u D )  +  ( C  x.  -u B
) )  =  -u ( ( A  x.  D )  +  ( C  x.  B ) ) )
2312, 22oveq12d 5895 . . 3  |-  ( ( ( A  e.  CC  /\  B  e.  CC )  /\  ( C  e.  CC  /\  D  e.  CC ) )  -> 
( ( ( A  x.  C )  +  ( -u D  x.  -u B ) )  +  ( ( A  x.  -u D )  +  ( C  x.  -u B
) ) )  =  ( ( ( A  x.  C )  +  ( D  x.  B
) )  +  -u ( ( A  x.  D )  +  ( C  x.  B ) ) ) )
24 mulcl 7940 . . . . . 6  |-  ( ( A  e.  CC  /\  C  e.  CC )  ->  ( A  x.  C
)  e.  CC )
25 mulcl 7940 . . . . . . 7  |-  ( ( D  e.  CC  /\  B  e.  CC )  ->  ( D  x.  B
)  e.  CC )
2625ancoms 268 . . . . . 6  |-  ( ( B  e.  CC  /\  D  e.  CC )  ->  ( D  x.  B
)  e.  CC )
27 addcl 7938 . . . . . 6  |-  ( ( ( A  x.  C
)  e.  CC  /\  ( D  x.  B
)  e.  CC )  ->  ( ( A  x.  C )  +  ( D  x.  B
) )  e.  CC )
2824, 26, 27syl2an 289 . . . . 5  |-  ( ( ( A  e.  CC  /\  C  e.  CC )  /\  ( B  e.  CC  /\  D  e.  CC ) )  -> 
( ( A  x.  C )  +  ( D  x.  B ) )  e.  CC )
2928an4s 588 . . . 4  |-  ( ( ( A  e.  CC  /\  B  e.  CC )  /\  ( C  e.  CC  /\  D  e.  CC ) )  -> 
( ( A  x.  C )  +  ( D  x.  B ) )  e.  CC )
3017ancoms 268 . . . . . 6  |-  ( ( B  e.  CC  /\  C  e.  CC )  ->  ( C  x.  B
)  e.  CC )
31 addcl 7938 . . . . . 6  |-  ( ( ( A  x.  D
)  e.  CC  /\  ( C  x.  B
)  e.  CC )  ->  ( ( A  x.  D )  +  ( C  x.  B
) )  e.  CC )
3216, 30, 31syl2an 289 . . . . 5  |-  ( ( ( A  e.  CC  /\  D  e.  CC )  /\  ( B  e.  CC  /\  C  e.  CC ) )  -> 
( ( A  x.  D )  +  ( C  x.  B ) )  e.  CC )
3332an42s 589 . . . 4  |-  ( ( ( A  e.  CC  /\  B  e.  CC )  /\  ( C  e.  CC  /\  D  e.  CC ) )  -> 
( ( A  x.  D )  +  ( C  x.  B ) )  e.  CC )
3429, 33negsubd 8276 . . 3  |-  ( ( ( A  e.  CC  /\  B  e.  CC )  /\  ( C  e.  CC  /\  D  e.  CC ) )  -> 
( ( ( A  x.  C )  +  ( D  x.  B
) )  +  -u ( ( A  x.  D )  +  ( C  x.  B ) ) )  =  ( ( ( A  x.  C )  +  ( D  x.  B ) )  -  ( ( A  x.  D )  +  ( C  x.  B ) ) ) )
358, 23, 343eqtrd 2214 . 2  |-  ( ( ( A  e.  CC  /\  B  e.  CC )  /\  ( C  e.  CC  /\  D  e.  CC ) )  -> 
( ( A  +  -u B )  x.  ( C  +  -u D ) )  =  ( ( ( A  x.  C
)  +  ( D  x.  B ) )  -  ( ( A  x.  D )  +  ( C  x.  B
) ) ) )
363, 35eqtr3d 2212 1  |-  ( ( ( A  e.  CC  /\  B  e.  CC )  /\  ( C  e.  CC  /\  D  e.  CC ) )  -> 
( ( A  -  B )  x.  ( C  -  D )
)  =  ( ( ( A  x.  C
)  +  ( D  x.  B ) )  -  ( ( A  x.  D )  +  ( C  x.  B
) ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    = wceq 1353    e. wcel 2148  (class class class)co 5877   CCcc 7811    + caddc 7816    x. cmul 7818    - cmin 8130   -ucneg 8131
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 614  ax-in2 615  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-14 2151  ax-ext 2159  ax-sep 4123  ax-pow 4176  ax-pr 4211  ax-setind 4538  ax-resscn 7905  ax-1cn 7906  ax-icn 7908  ax-addcl 7909  ax-addrcl 7910  ax-mulcl 7911  ax-addcom 7913  ax-mulcom 7914  ax-addass 7915  ax-distr 7917  ax-i2m1 7918  ax-0id 7921  ax-rnegex 7922  ax-cnre 7924
This theorem depends on definitions:  df-bi 117  df-3an 980  df-tru 1356  df-fal 1359  df-nf 1461  df-sb 1763  df-eu 2029  df-mo 2030  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-ne 2348  df-ral 2460  df-rex 2461  df-reu 2462  df-rab 2464  df-v 2741  df-sbc 2965  df-dif 3133  df-un 3135  df-in 3137  df-ss 3144  df-pw 3579  df-sn 3600  df-pr 3601  df-op 3603  df-uni 3812  df-br 4006  df-opab 4067  df-id 4295  df-xp 4634  df-rel 4635  df-cnv 4636  df-co 4637  df-dm 4638  df-iota 5180  df-fun 5220  df-fv 5226  df-riota 5833  df-ov 5880  df-oprab 5881  df-mpo 5882  df-sub 8132  df-neg 8133
This theorem is referenced by:  mulsubd  8376  muleqadd  8627  addltmul  9157  sqabssub  11067
  Copyright terms: Public domain W3C validator