Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > mulsub | Unicode version |
Description: Product of two differences. (Contributed by NM, 14-Jan-2006.) |
Ref | Expression |
---|---|
mulsub |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | negsub 8167 | . . 3 | |
2 | negsub 8167 | . . 3 | |
3 | 1, 2 | oveqan12d 5872 | . 2 |
4 | negcl 8119 | . . . 4 | |
5 | negcl 8119 | . . . . 5 | |
6 | muladd 8303 | . . . . 5 | |
7 | 5, 6 | sylanr2 403 | . . . 4 |
8 | 4, 7 | sylanl2 401 | . . 3 |
9 | mul2neg 8317 | . . . . . . 7 | |
10 | 9 | ancoms 266 | . . . . . 6 |
11 | 10 | oveq2d 5869 | . . . . 5 |
12 | 11 | ad2ant2l 505 | . . . 4 |
13 | mulneg2 8315 | . . . . . . . 8 | |
14 | mulneg2 8315 | . . . . . . . 8 | |
15 | 13, 14 | oveqan12d 5872 | . . . . . . 7 |
16 | mulcl 7901 | . . . . . . . 8 | |
17 | mulcl 7901 | . . . . . . . 8 | |
18 | negdi 8176 | . . . . . . . 8 | |
19 | 16, 17, 18 | syl2an 287 | . . . . . . 7 |
20 | 15, 19 | eqtr4d 2206 | . . . . . 6 |
21 | 20 | ancom2s 561 | . . . . 5 |
22 | 21 | an42s 584 | . . . 4 |
23 | 12, 22 | oveq12d 5871 | . . 3 |
24 | mulcl 7901 | . . . . . 6 | |
25 | mulcl 7901 | . . . . . . 7 | |
26 | 25 | ancoms 266 | . . . . . 6 |
27 | addcl 7899 | . . . . . 6 | |
28 | 24, 26, 27 | syl2an 287 | . . . . 5 |
29 | 28 | an4s 583 | . . . 4 |
30 | 17 | ancoms 266 | . . . . . 6 |
31 | addcl 7899 | . . . . . 6 | |
32 | 16, 30, 31 | syl2an 287 | . . . . 5 |
33 | 32 | an42s 584 | . . . 4 |
34 | 29, 33 | negsubd 8236 | . . 3 |
35 | 8, 23, 34 | 3eqtrd 2207 | . 2 |
36 | 3, 35 | eqtr3d 2205 | 1 |
Colors of variables: wff set class |
Syntax hints: wi 4 wa 103 wceq 1348 wcel 2141 (class class class)co 5853 cc 7772 caddc 7777 cmul 7779 cmin 8090 cneg 8091 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 609 ax-in2 610 ax-io 704 ax-5 1440 ax-7 1441 ax-gen 1442 ax-ie1 1486 ax-ie2 1487 ax-8 1497 ax-10 1498 ax-11 1499 ax-i12 1500 ax-bndl 1502 ax-4 1503 ax-17 1519 ax-i9 1523 ax-ial 1527 ax-i5r 1528 ax-14 2144 ax-ext 2152 ax-sep 4107 ax-pow 4160 ax-pr 4194 ax-setind 4521 ax-resscn 7866 ax-1cn 7867 ax-icn 7869 ax-addcl 7870 ax-addrcl 7871 ax-mulcl 7872 ax-addcom 7874 ax-mulcom 7875 ax-addass 7876 ax-distr 7878 ax-i2m1 7879 ax-0id 7882 ax-rnegex 7883 ax-cnre 7885 |
This theorem depends on definitions: df-bi 116 df-3an 975 df-tru 1351 df-fal 1354 df-nf 1454 df-sb 1756 df-eu 2022 df-mo 2023 df-clab 2157 df-cleq 2163 df-clel 2166 df-nfc 2301 df-ne 2341 df-ral 2453 df-rex 2454 df-reu 2455 df-rab 2457 df-v 2732 df-sbc 2956 df-dif 3123 df-un 3125 df-in 3127 df-ss 3134 df-pw 3568 df-sn 3589 df-pr 3590 df-op 3592 df-uni 3797 df-br 3990 df-opab 4051 df-id 4278 df-xp 4617 df-rel 4618 df-cnv 4619 df-co 4620 df-dm 4621 df-iota 5160 df-fun 5200 df-fv 5206 df-riota 5809 df-ov 5856 df-oprab 5857 df-mpo 5858 df-sub 8092 df-neg 8093 |
This theorem is referenced by: mulsubd 8336 muleqadd 8586 addltmul 9114 sqabssub 11020 |
Copyright terms: Public domain | W3C validator |