| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > mulsub | Unicode version | ||
| Description: Product of two differences. (Contributed by NM, 14-Jan-2006.) |
| Ref | Expression |
|---|---|
| mulsub |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | negsub 8355 |
. . 3
| |
| 2 | negsub 8355 |
. . 3
| |
| 3 | 1, 2 | oveqan12d 5986 |
. 2
|
| 4 | negcl 8307 |
. . . 4
| |
| 5 | negcl 8307 |
. . . . 5
| |
| 6 | muladd 8491 |
. . . . 5
| |
| 7 | 5, 6 | sylanr2 405 |
. . . 4
|
| 8 | 4, 7 | sylanl2 403 |
. . 3
|
| 9 | mul2neg 8505 |
. . . . . . 7
| |
| 10 | 9 | ancoms 268 |
. . . . . 6
|
| 11 | 10 | oveq2d 5983 |
. . . . 5
|
| 12 | 11 | ad2ant2l 508 |
. . . 4
|
| 13 | mulneg2 8503 |
. . . . . . . 8
| |
| 14 | mulneg2 8503 |
. . . . . . . 8
| |
| 15 | 13, 14 | oveqan12d 5986 |
. . . . . . 7
|
| 16 | mulcl 8087 |
. . . . . . . 8
| |
| 17 | mulcl 8087 |
. . . . . . . 8
| |
| 18 | negdi 8364 |
. . . . . . . 8
| |
| 19 | 16, 17, 18 | syl2an 289 |
. . . . . . 7
|
| 20 | 15, 19 | eqtr4d 2243 |
. . . . . 6
|
| 21 | 20 | ancom2s 566 |
. . . . 5
|
| 22 | 21 | an42s 589 |
. . . 4
|
| 23 | 12, 22 | oveq12d 5985 |
. . 3
|
| 24 | mulcl 8087 |
. . . . . 6
| |
| 25 | mulcl 8087 |
. . . . . . 7
| |
| 26 | 25 | ancoms 268 |
. . . . . 6
|
| 27 | addcl 8085 |
. . . . . 6
| |
| 28 | 24, 26, 27 | syl2an 289 |
. . . . 5
|
| 29 | 28 | an4s 588 |
. . . 4
|
| 30 | 17 | ancoms 268 |
. . . . . 6
|
| 31 | addcl 8085 |
. . . . . 6
| |
| 32 | 16, 30, 31 | syl2an 289 |
. . . . 5
|
| 33 | 32 | an42s 589 |
. . . 4
|
| 34 | 29, 33 | negsubd 8424 |
. . 3
|
| 35 | 8, 23, 34 | 3eqtrd 2244 |
. 2
|
| 36 | 3, 35 | eqtr3d 2242 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-14 2181 ax-ext 2189 ax-sep 4178 ax-pow 4234 ax-pr 4269 ax-setind 4603 ax-resscn 8052 ax-1cn 8053 ax-icn 8055 ax-addcl 8056 ax-addrcl 8057 ax-mulcl 8058 ax-addcom 8060 ax-mulcom 8061 ax-addass 8062 ax-distr 8064 ax-i2m1 8065 ax-0id 8068 ax-rnegex 8069 ax-cnre 8071 |
| This theorem depends on definitions: df-bi 117 df-3an 983 df-tru 1376 df-fal 1379 df-nf 1485 df-sb 1787 df-eu 2058 df-mo 2059 df-clab 2194 df-cleq 2200 df-clel 2203 df-nfc 2339 df-ne 2379 df-ral 2491 df-rex 2492 df-reu 2493 df-rab 2495 df-v 2778 df-sbc 3006 df-dif 3176 df-un 3178 df-in 3180 df-ss 3187 df-pw 3628 df-sn 3649 df-pr 3650 df-op 3652 df-uni 3865 df-br 4060 df-opab 4122 df-id 4358 df-xp 4699 df-rel 4700 df-cnv 4701 df-co 4702 df-dm 4703 df-iota 5251 df-fun 5292 df-fv 5298 df-riota 5922 df-ov 5970 df-oprab 5971 df-mpo 5972 df-sub 8280 df-neg 8281 |
| This theorem is referenced by: mulsubd 8524 muleqadd 8776 addltmul 9309 sqabssub 11482 |
| Copyright terms: Public domain | W3C validator |