ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  mulsub Unicode version

Theorem mulsub 8420
Description: Product of two differences. (Contributed by NM, 14-Jan-2006.)
Assertion
Ref Expression
mulsub  |-  ( ( ( A  e.  CC  /\  B  e.  CC )  /\  ( C  e.  CC  /\  D  e.  CC ) )  -> 
( ( A  -  B )  x.  ( C  -  D )
)  =  ( ( ( A  x.  C
)  +  ( D  x.  B ) )  -  ( ( A  x.  D )  +  ( C  x.  B
) ) ) )

Proof of Theorem mulsub
StepHypRef Expression
1 negsub 8267 . . 3  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( A  +  -u B )  =  ( A  -  B ) )
2 negsub 8267 . . 3  |-  ( ( C  e.  CC  /\  D  e.  CC )  ->  ( C  +  -u D )  =  ( C  -  D ) )
31, 2oveqan12d 5937 . 2  |-  ( ( ( A  e.  CC  /\  B  e.  CC )  /\  ( C  e.  CC  /\  D  e.  CC ) )  -> 
( ( A  +  -u B )  x.  ( C  +  -u D ) )  =  ( ( A  -  B )  x.  ( C  -  D ) ) )
4 negcl 8219 . . . 4  |-  ( B  e.  CC  ->  -u B  e.  CC )
5 negcl 8219 . . . . 5  |-  ( D  e.  CC  ->  -u D  e.  CC )
6 muladd 8403 . . . . 5  |-  ( ( ( A  e.  CC  /\  -u B  e.  CC )  /\  ( C  e.  CC  /\  -u D  e.  CC ) )  -> 
( ( A  +  -u B )  x.  ( C  +  -u D ) )  =  ( ( ( A  x.  C
)  +  ( -u D  x.  -u B ) )  +  ( ( A  x.  -u D
)  +  ( C  x.  -u B ) ) ) )
75, 6sylanr2 405 . . . 4  |-  ( ( ( A  e.  CC  /\  -u B  e.  CC )  /\  ( C  e.  CC  /\  D  e.  CC ) )  -> 
( ( A  +  -u B )  x.  ( C  +  -u D ) )  =  ( ( ( A  x.  C
)  +  ( -u D  x.  -u B ) )  +  ( ( A  x.  -u D
)  +  ( C  x.  -u B ) ) ) )
84, 7sylanl2 403 . . 3  |-  ( ( ( A  e.  CC  /\  B  e.  CC )  /\  ( C  e.  CC  /\  D  e.  CC ) )  -> 
( ( A  +  -u B )  x.  ( C  +  -u D ) )  =  ( ( ( A  x.  C
)  +  ( -u D  x.  -u B ) )  +  ( ( A  x.  -u D
)  +  ( C  x.  -u B ) ) ) )
9 mul2neg 8417 . . . . . . 7  |-  ( ( D  e.  CC  /\  B  e.  CC )  ->  ( -u D  x.  -u B )  =  ( D  x.  B ) )
109ancoms 268 . . . . . 6  |-  ( ( B  e.  CC  /\  D  e.  CC )  ->  ( -u D  x.  -u B )  =  ( D  x.  B ) )
1110oveq2d 5934 . . . . 5  |-  ( ( B  e.  CC  /\  D  e.  CC )  ->  ( ( A  x.  C )  +  (
-u D  x.  -u B
) )  =  ( ( A  x.  C
)  +  ( D  x.  B ) ) )
1211ad2ant2l 508 . . . 4  |-  ( ( ( A  e.  CC  /\  B  e.  CC )  /\  ( C  e.  CC  /\  D  e.  CC ) )  -> 
( ( A  x.  C )  +  (
-u D  x.  -u B
) )  =  ( ( A  x.  C
)  +  ( D  x.  B ) ) )
13 mulneg2 8415 . . . . . . . 8  |-  ( ( A  e.  CC  /\  D  e.  CC )  ->  ( A  x.  -u D
)  =  -u ( A  x.  D )
)
14 mulneg2 8415 . . . . . . . 8  |-  ( ( C  e.  CC  /\  B  e.  CC )  ->  ( C  x.  -u B
)  =  -u ( C  x.  B )
)
1513, 14oveqan12d 5937 . . . . . . 7  |-  ( ( ( A  e.  CC  /\  D  e.  CC )  /\  ( C  e.  CC  /\  B  e.  CC ) )  -> 
( ( A  x.  -u D )  +  ( C  x.  -u B
) )  =  (
-u ( A  x.  D )  +  -u ( C  x.  B
) ) )
16 mulcl 7999 . . . . . . . 8  |-  ( ( A  e.  CC  /\  D  e.  CC )  ->  ( A  x.  D
)  e.  CC )
17 mulcl 7999 . . . . . . . 8  |-  ( ( C  e.  CC  /\  B  e.  CC )  ->  ( C  x.  B
)  e.  CC )
18 negdi 8276 . . . . . . . 8  |-  ( ( ( A  x.  D
)  e.  CC  /\  ( C  x.  B
)  e.  CC )  ->  -u ( ( A  x.  D )  +  ( C  x.  B
) )  =  (
-u ( A  x.  D )  +  -u ( C  x.  B
) ) )
1916, 17, 18syl2an 289 . . . . . . 7  |-  ( ( ( A  e.  CC  /\  D  e.  CC )  /\  ( C  e.  CC  /\  B  e.  CC ) )  ->  -u ( ( A  x.  D )  +  ( C  x.  B ) )  =  ( -u ( A  x.  D
)  +  -u ( C  x.  B )
) )
2015, 19eqtr4d 2229 . . . . . 6  |-  ( ( ( A  e.  CC  /\  D  e.  CC )  /\  ( C  e.  CC  /\  B  e.  CC ) )  -> 
( ( A  x.  -u D )  +  ( C  x.  -u B
) )  =  -u ( ( A  x.  D )  +  ( C  x.  B ) ) )
2120ancom2s 566 . . . . 5  |-  ( ( ( A  e.  CC  /\  D  e.  CC )  /\  ( B  e.  CC  /\  C  e.  CC ) )  -> 
( ( A  x.  -u D )  +  ( C  x.  -u B
) )  =  -u ( ( A  x.  D )  +  ( C  x.  B ) ) )
2221an42s 589 . . . 4  |-  ( ( ( A  e.  CC  /\  B  e.  CC )  /\  ( C  e.  CC  /\  D  e.  CC ) )  -> 
( ( A  x.  -u D )  +  ( C  x.  -u B
) )  =  -u ( ( A  x.  D )  +  ( C  x.  B ) ) )
2312, 22oveq12d 5936 . . 3  |-  ( ( ( A  e.  CC  /\  B  e.  CC )  /\  ( C  e.  CC  /\  D  e.  CC ) )  -> 
( ( ( A  x.  C )  +  ( -u D  x.  -u B ) )  +  ( ( A  x.  -u D )  +  ( C  x.  -u B
) ) )  =  ( ( ( A  x.  C )  +  ( D  x.  B
) )  +  -u ( ( A  x.  D )  +  ( C  x.  B ) ) ) )
24 mulcl 7999 . . . . . 6  |-  ( ( A  e.  CC  /\  C  e.  CC )  ->  ( A  x.  C
)  e.  CC )
25 mulcl 7999 . . . . . . 7  |-  ( ( D  e.  CC  /\  B  e.  CC )  ->  ( D  x.  B
)  e.  CC )
2625ancoms 268 . . . . . 6  |-  ( ( B  e.  CC  /\  D  e.  CC )  ->  ( D  x.  B
)  e.  CC )
27 addcl 7997 . . . . . 6  |-  ( ( ( A  x.  C
)  e.  CC  /\  ( D  x.  B
)  e.  CC )  ->  ( ( A  x.  C )  +  ( D  x.  B
) )  e.  CC )
2824, 26, 27syl2an 289 . . . . 5  |-  ( ( ( A  e.  CC  /\  C  e.  CC )  /\  ( B  e.  CC  /\  D  e.  CC ) )  -> 
( ( A  x.  C )  +  ( D  x.  B ) )  e.  CC )
2928an4s 588 . . . 4  |-  ( ( ( A  e.  CC  /\  B  e.  CC )  /\  ( C  e.  CC  /\  D  e.  CC ) )  -> 
( ( A  x.  C )  +  ( D  x.  B ) )  e.  CC )
3017ancoms 268 . . . . . 6  |-  ( ( B  e.  CC  /\  C  e.  CC )  ->  ( C  x.  B
)  e.  CC )
31 addcl 7997 . . . . . 6  |-  ( ( ( A  x.  D
)  e.  CC  /\  ( C  x.  B
)  e.  CC )  ->  ( ( A  x.  D )  +  ( C  x.  B
) )  e.  CC )
3216, 30, 31syl2an 289 . . . . 5  |-  ( ( ( A  e.  CC  /\  D  e.  CC )  /\  ( B  e.  CC  /\  C  e.  CC ) )  -> 
( ( A  x.  D )  +  ( C  x.  B ) )  e.  CC )
3332an42s 589 . . . 4  |-  ( ( ( A  e.  CC  /\  B  e.  CC )  /\  ( C  e.  CC  /\  D  e.  CC ) )  -> 
( ( A  x.  D )  +  ( C  x.  B ) )  e.  CC )
3429, 33negsubd 8336 . . 3  |-  ( ( ( A  e.  CC  /\  B  e.  CC )  /\  ( C  e.  CC  /\  D  e.  CC ) )  -> 
( ( ( A  x.  C )  +  ( D  x.  B
) )  +  -u ( ( A  x.  D )  +  ( C  x.  B ) ) )  =  ( ( ( A  x.  C )  +  ( D  x.  B ) )  -  ( ( A  x.  D )  +  ( C  x.  B ) ) ) )
358, 23, 343eqtrd 2230 . 2  |-  ( ( ( A  e.  CC  /\  B  e.  CC )  /\  ( C  e.  CC  /\  D  e.  CC ) )  -> 
( ( A  +  -u B )  x.  ( C  +  -u D ) )  =  ( ( ( A  x.  C
)  +  ( D  x.  B ) )  -  ( ( A  x.  D )  +  ( C  x.  B
) ) ) )
363, 35eqtr3d 2228 1  |-  ( ( ( A  e.  CC  /\  B  e.  CC )  /\  ( C  e.  CC  /\  D  e.  CC ) )  -> 
( ( A  -  B )  x.  ( C  -  D )
)  =  ( ( ( A  x.  C
)  +  ( D  x.  B ) )  -  ( ( A  x.  D )  +  ( C  x.  B
) ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    = wceq 1364    e. wcel 2164  (class class class)co 5918   CCcc 7870    + caddc 7875    x. cmul 7877    - cmin 8190   -ucneg 8191
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-14 2167  ax-ext 2175  ax-sep 4147  ax-pow 4203  ax-pr 4238  ax-setind 4569  ax-resscn 7964  ax-1cn 7965  ax-icn 7967  ax-addcl 7968  ax-addrcl 7969  ax-mulcl 7970  ax-addcom 7972  ax-mulcom 7973  ax-addass 7974  ax-distr 7976  ax-i2m1 7977  ax-0id 7980  ax-rnegex 7981  ax-cnre 7983
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1472  df-sb 1774  df-eu 2045  df-mo 2046  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-ne 2365  df-ral 2477  df-rex 2478  df-reu 2479  df-rab 2481  df-v 2762  df-sbc 2986  df-dif 3155  df-un 3157  df-in 3159  df-ss 3166  df-pw 3603  df-sn 3624  df-pr 3625  df-op 3627  df-uni 3836  df-br 4030  df-opab 4091  df-id 4324  df-xp 4665  df-rel 4666  df-cnv 4667  df-co 4668  df-dm 4669  df-iota 5215  df-fun 5256  df-fv 5262  df-riota 5873  df-ov 5921  df-oprab 5922  df-mpo 5923  df-sub 8192  df-neg 8193
This theorem is referenced by:  mulsubd  8436  muleqadd  8687  addltmul  9219  sqabssub  11200
  Copyright terms: Public domain W3C validator