ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  eqord1 Unicode version

Theorem eqord1 8435
Description: A strictly increasing real function on a subset of  RR is one-to-one. (Contributed by Mario Carneiro, 14-Jun-2014.) (Revised by Jim Kingdon, 20-Dec-2022.)
Hypotheses
Ref Expression
ltord.1  |-  ( x  =  y  ->  A  =  B )
ltord.2  |-  ( x  =  C  ->  A  =  M )
ltord.3  |-  ( x  =  D  ->  A  =  N )
ltord.4  |-  S  C_  RR
ltord.5  |-  ( (
ph  /\  x  e.  S )  ->  A  e.  RR )
ltord.6  |-  ( (
ph  /\  ( x  e.  S  /\  y  e.  S ) )  -> 
( x  <  y  ->  A  <  B ) )
Assertion
Ref Expression
eqord1  |-  ( (
ph  /\  ( C  e.  S  /\  D  e.  S ) )  -> 
( C  =  D  <-> 
M  =  N ) )
Distinct variable groups:    x, B    x, y, C    x, D, y   
x, M, y    x, N, y    ph, x, y   
x, S, y
Allowed substitution hints:    A( x, y)    B( y)

Proof of Theorem eqord1
StepHypRef Expression
1 simprl 529 . . . . . 6  |-  ( (
ph  /\  ( C  e.  S  /\  D  e.  S ) )  ->  C  e.  S )
2 elisset 2751 . . . . . 6  |-  ( C  e.  S  ->  E. x  x  =  C )
31, 2syl 14 . . . . 5  |-  ( (
ph  /\  ( C  e.  S  /\  D  e.  S ) )  ->  E. x  x  =  C )
43adantr 276 . . . 4  |-  ( ( ( ph  /\  ( C  e.  S  /\  D  e.  S )
)  /\  C  =  D )  ->  E. x  x  =  C )
5 ltord.2 . . . . . 6  |-  ( x  =  C  ->  A  =  M )
65adantl 277 . . . . 5  |-  ( ( ( ( ph  /\  ( C  e.  S  /\  D  e.  S
) )  /\  C  =  D )  /\  x  =  C )  ->  A  =  M )
7 eqeq2 2187 . . . . . . . 8  |-  ( C  =  D  ->  (
x  =  C  <->  x  =  D ) )
87adantl 277 . . . . . . 7  |-  ( ( ( ph  /\  ( C  e.  S  /\  D  e.  S )
)  /\  C  =  D )  ->  (
x  =  C  <->  x  =  D ) )
98biimpa 296 . . . . . 6  |-  ( ( ( ( ph  /\  ( C  e.  S  /\  D  e.  S
) )  /\  C  =  D )  /\  x  =  C )  ->  x  =  D )
10 ltord.3 . . . . . 6  |-  ( x  =  D  ->  A  =  N )
119, 10syl 14 . . . . 5  |-  ( ( ( ( ph  /\  ( C  e.  S  /\  D  e.  S
) )  /\  C  =  D )  /\  x  =  C )  ->  A  =  N )
126, 11eqtr3d 2212 . . . 4  |-  ( ( ( ( ph  /\  ( C  e.  S  /\  D  e.  S
) )  /\  C  =  D )  /\  x  =  C )  ->  M  =  N )
134, 12exlimddv 1898 . . 3  |-  ( ( ( ph  /\  ( C  e.  S  /\  D  e.  S )
)  /\  C  =  D )  ->  M  =  N )
1413ex 115 . 2  |-  ( (
ph  /\  ( C  e.  S  /\  D  e.  S ) )  -> 
( C  =  D  ->  M  =  N ) )
15 ltord.1 . . . . . 6  |-  ( x  =  y  ->  A  =  B )
16 ltord.4 . . . . . 6  |-  S  C_  RR
17 ltord.5 . . . . . 6  |-  ( (
ph  /\  x  e.  S )  ->  A  e.  RR )
18 ltord.6 . . . . . 6  |-  ( (
ph  /\  ( x  e.  S  /\  y  e.  S ) )  -> 
( x  <  y  ->  A  <  B ) )
1915, 5, 10, 16, 17, 18ltordlem 8434 . . . . 5  |-  ( (
ph  /\  ( C  e.  S  /\  D  e.  S ) )  -> 
( C  <  D  ->  M  <  N ) )
2019con3d 631 . . . 4  |-  ( (
ph  /\  ( C  e.  S  /\  D  e.  S ) )  -> 
( -.  M  < 
N  ->  -.  C  <  D ) )
2115, 10, 5, 16, 17, 18ltordlem 8434 . . . . . 6  |-  ( (
ph  /\  ( D  e.  S  /\  C  e.  S ) )  -> 
( D  <  C  ->  N  <  M ) )
2221con3d 631 . . . . 5  |-  ( (
ph  /\  ( D  e.  S  /\  C  e.  S ) )  -> 
( -.  N  < 
M  ->  -.  D  <  C ) )
2322ancom2s 566 . . . 4  |-  ( (
ph  /\  ( C  e.  S  /\  D  e.  S ) )  -> 
( -.  N  < 
M  ->  -.  D  <  C ) )
2420, 23anim12d 335 . . 3  |-  ( (
ph  /\  ( C  e.  S  /\  D  e.  S ) )  -> 
( ( -.  M  <  N  /\  -.  N  <  M )  ->  ( -.  C  <  D  /\  -.  D  <  C ) ) )
2517ralrimiva 2550 . . . . . 6  |-  ( ph  ->  A. x  e.  S  A  e.  RR )
265eleq1d 2246 . . . . . . 7  |-  ( x  =  C  ->  ( A  e.  RR  <->  M  e.  RR ) )
2726rspccva 2840 . . . . . 6  |-  ( ( A. x  e.  S  A  e.  RR  /\  C  e.  S )  ->  M  e.  RR )
2825, 27sylan 283 . . . . 5  |-  ( (
ph  /\  C  e.  S )  ->  M  e.  RR )
2928adantrr 479 . . . 4  |-  ( (
ph  /\  ( C  e.  S  /\  D  e.  S ) )  ->  M  e.  RR )
3010eleq1d 2246 . . . . . . 7  |-  ( x  =  D  ->  ( A  e.  RR  <->  N  e.  RR ) )
3130rspccva 2840 . . . . . 6  |-  ( ( A. x  e.  S  A  e.  RR  /\  D  e.  S )  ->  N  e.  RR )
3225, 31sylan 283 . . . . 5  |-  ( (
ph  /\  D  e.  S )  ->  N  e.  RR )
3332adantrl 478 . . . 4  |-  ( (
ph  /\  ( C  e.  S  /\  D  e.  S ) )  ->  N  e.  RR )
3429, 33lttri3d 8067 . . 3  |-  ( (
ph  /\  ( C  e.  S  /\  D  e.  S ) )  -> 
( M  =  N  <-> 
( -.  M  < 
N  /\  -.  N  <  M ) ) )
3516, 1sselid 3153 . . . 4  |-  ( (
ph  /\  ( C  e.  S  /\  D  e.  S ) )  ->  C  e.  RR )
36 simprr 531 . . . . 5  |-  ( (
ph  /\  ( C  e.  S  /\  D  e.  S ) )  ->  D  e.  S )
3716, 36sselid 3153 . . . 4  |-  ( (
ph  /\  ( C  e.  S  /\  D  e.  S ) )  ->  D  e.  RR )
3835, 37lttri3d 8067 . . 3  |-  ( (
ph  /\  ( C  e.  S  /\  D  e.  S ) )  -> 
( C  =  D  <-> 
( -.  C  < 
D  /\  -.  D  <  C ) ) )
3924, 34, 383imtr4d 203 . 2  |-  ( (
ph  /\  ( C  e.  S  /\  D  e.  S ) )  -> 
( M  =  N  ->  C  =  D ) )
4014, 39impbid 129 1  |-  ( (
ph  /\  ( C  e.  S  /\  D  e.  S ) )  -> 
( C  =  D  <-> 
M  =  N ) )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 104    <-> wb 105    = wceq 1353   E.wex 1492    e. wcel 2148   A.wral 2455    C_ wss 3129   class class class wbr 4002   RRcr 7806    < clt 7987
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 614  ax-in2 615  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-13 2150  ax-14 2151  ax-ext 2159  ax-sep 4120  ax-pow 4173  ax-pr 4208  ax-un 4432  ax-setind 4535  ax-cnex 7898  ax-resscn 7899  ax-pre-ltirr 7919  ax-pre-apti 7922
This theorem depends on definitions:  df-bi 117  df-3an 980  df-tru 1356  df-fal 1359  df-nf 1461  df-sb 1763  df-eu 2029  df-mo 2030  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-ne 2348  df-nel 2443  df-ral 2460  df-rex 2461  df-rab 2464  df-v 2739  df-dif 3131  df-un 3133  df-in 3135  df-ss 3142  df-pw 3577  df-sn 3598  df-pr 3599  df-op 3601  df-uni 3810  df-br 4003  df-opab 4064  df-xp 4631  df-pnf 7989  df-mnf 7990  df-ltxr 7992
This theorem is referenced by:  eqord2  8436  reef11  11699  nninfdclemf1  12444
  Copyright terms: Public domain W3C validator