ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  eqord1 Unicode version

Theorem eqord1 8591
Description: A strictly increasing real function on a subset of  RR is one-to-one. (Contributed by Mario Carneiro, 14-Jun-2014.) (Revised by Jim Kingdon, 20-Dec-2022.)
Hypotheses
Ref Expression
ltord.1  |-  ( x  =  y  ->  A  =  B )
ltord.2  |-  ( x  =  C  ->  A  =  M )
ltord.3  |-  ( x  =  D  ->  A  =  N )
ltord.4  |-  S  C_  RR
ltord.5  |-  ( (
ph  /\  x  e.  S )  ->  A  e.  RR )
ltord.6  |-  ( (
ph  /\  ( x  e.  S  /\  y  e.  S ) )  -> 
( x  <  y  ->  A  <  B ) )
Assertion
Ref Expression
eqord1  |-  ( (
ph  /\  ( C  e.  S  /\  D  e.  S ) )  -> 
( C  =  D  <-> 
M  =  N ) )
Distinct variable groups:    x, B    x, y, C    x, D, y   
x, M, y    x, N, y    ph, x, y   
x, S, y
Allowed substitution hints:    A( x, y)    B( y)

Proof of Theorem eqord1
StepHypRef Expression
1 simprl 529 . . . . . 6  |-  ( (
ph  /\  ( C  e.  S  /\  D  e.  S ) )  ->  C  e.  S )
2 elisset 2791 . . . . . 6  |-  ( C  e.  S  ->  E. x  x  =  C )
31, 2syl 14 . . . . 5  |-  ( (
ph  /\  ( C  e.  S  /\  D  e.  S ) )  ->  E. x  x  =  C )
43adantr 276 . . . 4  |-  ( ( ( ph  /\  ( C  e.  S  /\  D  e.  S )
)  /\  C  =  D )  ->  E. x  x  =  C )
5 ltord.2 . . . . . 6  |-  ( x  =  C  ->  A  =  M )
65adantl 277 . . . . 5  |-  ( ( ( ( ph  /\  ( C  e.  S  /\  D  e.  S
) )  /\  C  =  D )  /\  x  =  C )  ->  A  =  M )
7 eqeq2 2217 . . . . . . . 8  |-  ( C  =  D  ->  (
x  =  C  <->  x  =  D ) )
87adantl 277 . . . . . . 7  |-  ( ( ( ph  /\  ( C  e.  S  /\  D  e.  S )
)  /\  C  =  D )  ->  (
x  =  C  <->  x  =  D ) )
98biimpa 296 . . . . . 6  |-  ( ( ( ( ph  /\  ( C  e.  S  /\  D  e.  S
) )  /\  C  =  D )  /\  x  =  C )  ->  x  =  D )
10 ltord.3 . . . . . 6  |-  ( x  =  D  ->  A  =  N )
119, 10syl 14 . . . . 5  |-  ( ( ( ( ph  /\  ( C  e.  S  /\  D  e.  S
) )  /\  C  =  D )  /\  x  =  C )  ->  A  =  N )
126, 11eqtr3d 2242 . . . 4  |-  ( ( ( ( ph  /\  ( C  e.  S  /\  D  e.  S
) )  /\  C  =  D )  /\  x  =  C )  ->  M  =  N )
134, 12exlimddv 1923 . . 3  |-  ( ( ( ph  /\  ( C  e.  S  /\  D  e.  S )
)  /\  C  =  D )  ->  M  =  N )
1413ex 115 . 2  |-  ( (
ph  /\  ( C  e.  S  /\  D  e.  S ) )  -> 
( C  =  D  ->  M  =  N ) )
15 ltord.1 . . . . . 6  |-  ( x  =  y  ->  A  =  B )
16 ltord.4 . . . . . 6  |-  S  C_  RR
17 ltord.5 . . . . . 6  |-  ( (
ph  /\  x  e.  S )  ->  A  e.  RR )
18 ltord.6 . . . . . 6  |-  ( (
ph  /\  ( x  e.  S  /\  y  e.  S ) )  -> 
( x  <  y  ->  A  <  B ) )
1915, 5, 10, 16, 17, 18ltordlem 8590 . . . . 5  |-  ( (
ph  /\  ( C  e.  S  /\  D  e.  S ) )  -> 
( C  <  D  ->  M  <  N ) )
2019con3d 632 . . . 4  |-  ( (
ph  /\  ( C  e.  S  /\  D  e.  S ) )  -> 
( -.  M  < 
N  ->  -.  C  <  D ) )
2115, 10, 5, 16, 17, 18ltordlem 8590 . . . . . 6  |-  ( (
ph  /\  ( D  e.  S  /\  C  e.  S ) )  -> 
( D  <  C  ->  N  <  M ) )
2221con3d 632 . . . . 5  |-  ( (
ph  /\  ( D  e.  S  /\  C  e.  S ) )  -> 
( -.  N  < 
M  ->  -.  D  <  C ) )
2322ancom2s 566 . . . 4  |-  ( (
ph  /\  ( C  e.  S  /\  D  e.  S ) )  -> 
( -.  N  < 
M  ->  -.  D  <  C ) )
2420, 23anim12d 335 . . 3  |-  ( (
ph  /\  ( C  e.  S  /\  D  e.  S ) )  -> 
( ( -.  M  <  N  /\  -.  N  <  M )  ->  ( -.  C  <  D  /\  -.  D  <  C ) ) )
2517ralrimiva 2581 . . . . . 6  |-  ( ph  ->  A. x  e.  S  A  e.  RR )
265eleq1d 2276 . . . . . . 7  |-  ( x  =  C  ->  ( A  e.  RR  <->  M  e.  RR ) )
2726rspccva 2883 . . . . . 6  |-  ( ( A. x  e.  S  A  e.  RR  /\  C  e.  S )  ->  M  e.  RR )
2825, 27sylan 283 . . . . 5  |-  ( (
ph  /\  C  e.  S )  ->  M  e.  RR )
2928adantrr 479 . . . 4  |-  ( (
ph  /\  ( C  e.  S  /\  D  e.  S ) )  ->  M  e.  RR )
3010eleq1d 2276 . . . . . . 7  |-  ( x  =  D  ->  ( A  e.  RR  <->  N  e.  RR ) )
3130rspccva 2883 . . . . . 6  |-  ( ( A. x  e.  S  A  e.  RR  /\  D  e.  S )  ->  N  e.  RR )
3225, 31sylan 283 . . . . 5  |-  ( (
ph  /\  D  e.  S )  ->  N  e.  RR )
3332adantrl 478 . . . 4  |-  ( (
ph  /\  ( C  e.  S  /\  D  e.  S ) )  ->  N  e.  RR )
3429, 33lttri3d 8222 . . 3  |-  ( (
ph  /\  ( C  e.  S  /\  D  e.  S ) )  -> 
( M  =  N  <-> 
( -.  M  < 
N  /\  -.  N  <  M ) ) )
3516, 1sselid 3199 . . . 4  |-  ( (
ph  /\  ( C  e.  S  /\  D  e.  S ) )  ->  C  e.  RR )
36 simprr 531 . . . . 5  |-  ( (
ph  /\  ( C  e.  S  /\  D  e.  S ) )  ->  D  e.  S )
3716, 36sselid 3199 . . . 4  |-  ( (
ph  /\  ( C  e.  S  /\  D  e.  S ) )  ->  D  e.  RR )
3835, 37lttri3d 8222 . . 3  |-  ( (
ph  /\  ( C  e.  S  /\  D  e.  S ) )  -> 
( C  =  D  <-> 
( -.  C  < 
D  /\  -.  D  <  C ) ) )
3924, 34, 383imtr4d 203 . 2  |-  ( (
ph  /\  ( C  e.  S  /\  D  e.  S ) )  -> 
( M  =  N  ->  C  =  D ) )
4014, 39impbid 129 1  |-  ( (
ph  /\  ( C  e.  S  /\  D  e.  S ) )  -> 
( C  =  D  <-> 
M  =  N ) )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 104    <-> wb 105    = wceq 1373   E.wex 1516    e. wcel 2178   A.wral 2486    C_ wss 3174   class class class wbr 4059   RRcr 7959    < clt 8142
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-13 2180  ax-14 2181  ax-ext 2189  ax-sep 4178  ax-pow 4234  ax-pr 4269  ax-un 4498  ax-setind 4603  ax-cnex 8051  ax-resscn 8052  ax-pre-ltirr 8072  ax-pre-apti 8075
This theorem depends on definitions:  df-bi 117  df-3an 983  df-tru 1376  df-fal 1379  df-nf 1485  df-sb 1787  df-eu 2058  df-mo 2059  df-clab 2194  df-cleq 2200  df-clel 2203  df-nfc 2339  df-ne 2379  df-nel 2474  df-ral 2491  df-rex 2492  df-rab 2495  df-v 2778  df-dif 3176  df-un 3178  df-in 3180  df-ss 3187  df-pw 3628  df-sn 3649  df-pr 3650  df-op 3652  df-uni 3865  df-br 4060  df-opab 4122  df-xp 4699  df-pnf 8144  df-mnf 8145  df-ltxr 8147
This theorem is referenced by:  eqord2  8592  reef11  12125  nninfdclemf1  12938
  Copyright terms: Public domain W3C validator