Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > eqord1 | Unicode version |
Description: A strictly increasing real function on a subset of is one-to-one. (Contributed by Mario Carneiro, 14-Jun-2014.) (Revised by Jim Kingdon, 20-Dec-2022.) |
Ref | Expression |
---|---|
ltord.1 | |
ltord.2 | |
ltord.3 | |
ltord.4 | |
ltord.5 | |
ltord.6 |
Ref | Expression |
---|---|
eqord1 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simprl 521 | . . . . . 6 | |
2 | elisset 2740 | . . . . . 6 | |
3 | 1, 2 | syl 14 | . . . . 5 |
4 | 3 | adantr 274 | . . . 4 |
5 | ltord.2 | . . . . . 6 | |
6 | 5 | adantl 275 | . . . . 5 |
7 | eqeq2 2175 | . . . . . . . 8 | |
8 | 7 | adantl 275 | . . . . . . 7 |
9 | 8 | biimpa 294 | . . . . . 6 |
10 | ltord.3 | . . . . . 6 | |
11 | 9, 10 | syl 14 | . . . . 5 |
12 | 6, 11 | eqtr3d 2200 | . . . 4 |
13 | 4, 12 | exlimddv 1886 | . . 3 |
14 | 13 | ex 114 | . 2 |
15 | ltord.1 | . . . . . 6 | |
16 | ltord.4 | . . . . . 6 | |
17 | ltord.5 | . . . . . 6 | |
18 | ltord.6 | . . . . . 6 | |
19 | 15, 5, 10, 16, 17, 18 | ltordlem 8380 | . . . . 5 |
20 | 19 | con3d 621 | . . . 4 |
21 | 15, 10, 5, 16, 17, 18 | ltordlem 8380 | . . . . . 6 |
22 | 21 | con3d 621 | . . . . 5 |
23 | 22 | ancom2s 556 | . . . 4 |
24 | 20, 23 | anim12d 333 | . . 3 |
25 | 17 | ralrimiva 2539 | . . . . . 6 |
26 | 5 | eleq1d 2235 | . . . . . . 7 |
27 | 26 | rspccva 2829 | . . . . . 6 |
28 | 25, 27 | sylan 281 | . . . . 5 |
29 | 28 | adantrr 471 | . . . 4 |
30 | 10 | eleq1d 2235 | . . . . . . 7 |
31 | 30 | rspccva 2829 | . . . . . 6 |
32 | 25, 31 | sylan 281 | . . . . 5 |
33 | 32 | adantrl 470 | . . . 4 |
34 | 29, 33 | lttri3d 8013 | . . 3 |
35 | 16, 1 | sselid 3140 | . . . 4 |
36 | simprr 522 | . . . . 5 | |
37 | 16, 36 | sselid 3140 | . . . 4 |
38 | 35, 37 | lttri3d 8013 | . . 3 |
39 | 24, 34, 38 | 3imtr4d 202 | . 2 |
40 | 14, 39 | impbid 128 | 1 |
Colors of variables: wff set class |
Syntax hints: wn 3 wi 4 wa 103 wb 104 wceq 1343 wex 1480 wcel 2136 wral 2444 wss 3116 class class class wbr 3982 cr 7752 clt 7933 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 604 ax-in2 605 ax-io 699 ax-5 1435 ax-7 1436 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-8 1492 ax-10 1493 ax-11 1494 ax-i12 1495 ax-bndl 1497 ax-4 1498 ax-17 1514 ax-i9 1518 ax-ial 1522 ax-i5r 1523 ax-13 2138 ax-14 2139 ax-ext 2147 ax-sep 4100 ax-pow 4153 ax-pr 4187 ax-un 4411 ax-setind 4514 ax-cnex 7844 ax-resscn 7845 ax-pre-ltirr 7865 ax-pre-apti 7868 |
This theorem depends on definitions: df-bi 116 df-3an 970 df-tru 1346 df-fal 1349 df-nf 1449 df-sb 1751 df-eu 2017 df-mo 2018 df-clab 2152 df-cleq 2158 df-clel 2161 df-nfc 2297 df-ne 2337 df-nel 2432 df-ral 2449 df-rex 2450 df-rab 2453 df-v 2728 df-dif 3118 df-un 3120 df-in 3122 df-ss 3129 df-pw 3561 df-sn 3582 df-pr 3583 df-op 3585 df-uni 3790 df-br 3983 df-opab 4044 df-xp 4610 df-pnf 7935 df-mnf 7936 df-ltxr 7938 |
This theorem is referenced by: eqord2 8382 reef11 11640 nninfdclemf1 12385 |
Copyright terms: Public domain | W3C validator |