| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > eqord1 | Unicode version | ||
| Description: A strictly increasing
real function on a subset of |
| Ref | Expression |
|---|---|
| ltord.1 |
|
| ltord.2 |
|
| ltord.3 |
|
| ltord.4 |
|
| ltord.5 |
|
| ltord.6 |
|
| Ref | Expression |
|---|---|
| eqord1 |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simprl 529 |
. . . . . 6
| |
| 2 | elisset 2786 |
. . . . . 6
| |
| 3 | 1, 2 | syl 14 |
. . . . 5
|
| 4 | 3 | adantr 276 |
. . . 4
|
| 5 | ltord.2 |
. . . . . 6
| |
| 6 | 5 | adantl 277 |
. . . . 5
|
| 7 | eqeq2 2215 |
. . . . . . . 8
| |
| 8 | 7 | adantl 277 |
. . . . . . 7
|
| 9 | 8 | biimpa 296 |
. . . . . 6
|
| 10 | ltord.3 |
. . . . . 6
| |
| 11 | 9, 10 | syl 14 |
. . . . 5
|
| 12 | 6, 11 | eqtr3d 2240 |
. . . 4
|
| 13 | 4, 12 | exlimddv 1922 |
. . 3
|
| 14 | 13 | ex 115 |
. 2
|
| 15 | ltord.1 |
. . . . . 6
| |
| 16 | ltord.4 |
. . . . . 6
| |
| 17 | ltord.5 |
. . . . . 6
| |
| 18 | ltord.6 |
. . . . . 6
| |
| 19 | 15, 5, 10, 16, 17, 18 | ltordlem 8557 |
. . . . 5
|
| 20 | 19 | con3d 632 |
. . . 4
|
| 21 | 15, 10, 5, 16, 17, 18 | ltordlem 8557 |
. . . . . 6
|
| 22 | 21 | con3d 632 |
. . . . 5
|
| 23 | 22 | ancom2s 566 |
. . . 4
|
| 24 | 20, 23 | anim12d 335 |
. . 3
|
| 25 | 17 | ralrimiva 2579 |
. . . . . 6
|
| 26 | 5 | eleq1d 2274 |
. . . . . . 7
|
| 27 | 26 | rspccva 2876 |
. . . . . 6
|
| 28 | 25, 27 | sylan 283 |
. . . . 5
|
| 29 | 28 | adantrr 479 |
. . . 4
|
| 30 | 10 | eleq1d 2274 |
. . . . . . 7
|
| 31 | 30 | rspccva 2876 |
. . . . . 6
|
| 32 | 25, 31 | sylan 283 |
. . . . 5
|
| 33 | 32 | adantrl 478 |
. . . 4
|
| 34 | 29, 33 | lttri3d 8189 |
. . 3
|
| 35 | 16, 1 | sselid 3191 |
. . . 4
|
| 36 | simprr 531 |
. . . . 5
| |
| 37 | 16, 36 | sselid 3191 |
. . . 4
|
| 38 | 35, 37 | lttri3d 8189 |
. . 3
|
| 39 | 24, 34, 38 | 3imtr4d 203 |
. 2
|
| 40 | 14, 39 | impbid 129 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 711 ax-5 1470 ax-7 1471 ax-gen 1472 ax-ie1 1516 ax-ie2 1517 ax-8 1527 ax-10 1528 ax-11 1529 ax-i12 1530 ax-bndl 1532 ax-4 1533 ax-17 1549 ax-i9 1553 ax-ial 1557 ax-i5r 1558 ax-13 2178 ax-14 2179 ax-ext 2187 ax-sep 4163 ax-pow 4219 ax-pr 4254 ax-un 4481 ax-setind 4586 ax-cnex 8018 ax-resscn 8019 ax-pre-ltirr 8039 ax-pre-apti 8042 |
| This theorem depends on definitions: df-bi 117 df-3an 983 df-tru 1376 df-fal 1379 df-nf 1484 df-sb 1786 df-eu 2057 df-mo 2058 df-clab 2192 df-cleq 2198 df-clel 2201 df-nfc 2337 df-ne 2377 df-nel 2472 df-ral 2489 df-rex 2490 df-rab 2493 df-v 2774 df-dif 3168 df-un 3170 df-in 3172 df-ss 3179 df-pw 3618 df-sn 3639 df-pr 3640 df-op 3642 df-uni 3851 df-br 4046 df-opab 4107 df-xp 4682 df-pnf 8111 df-mnf 8112 df-ltxr 8114 |
| This theorem is referenced by: eqord2 8559 reef11 12043 nninfdclemf1 12856 |
| Copyright terms: Public domain | W3C validator |