Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > eqord1 | Unicode version |
Description: A strictly increasing real function on a subset of is one-to-one. (Contributed by Mario Carneiro, 14-Jun-2014.) (Revised by Jim Kingdon, 20-Dec-2022.) |
Ref | Expression |
---|---|
ltord.1 | |
ltord.2 | |
ltord.3 | |
ltord.4 | |
ltord.5 | |
ltord.6 |
Ref | Expression |
---|---|
eqord1 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simprl 526 | . . . . . 6 | |
2 | elisset 2744 | . . . . . 6 | |
3 | 1, 2 | syl 14 | . . . . 5 |
4 | 3 | adantr 274 | . . . 4 |
5 | ltord.2 | . . . . . 6 | |
6 | 5 | adantl 275 | . . . . 5 |
7 | eqeq2 2180 | . . . . . . . 8 | |
8 | 7 | adantl 275 | . . . . . . 7 |
9 | 8 | biimpa 294 | . . . . . 6 |
10 | ltord.3 | . . . . . 6 | |
11 | 9, 10 | syl 14 | . . . . 5 |
12 | 6, 11 | eqtr3d 2205 | . . . 4 |
13 | 4, 12 | exlimddv 1891 | . . 3 |
14 | 13 | ex 114 | . 2 |
15 | ltord.1 | . . . . . 6 | |
16 | ltord.4 | . . . . . 6 | |
17 | ltord.5 | . . . . . 6 | |
18 | ltord.6 | . . . . . 6 | |
19 | 15, 5, 10, 16, 17, 18 | ltordlem 8401 | . . . . 5 |
20 | 19 | con3d 626 | . . . 4 |
21 | 15, 10, 5, 16, 17, 18 | ltordlem 8401 | . . . . . 6 |
22 | 21 | con3d 626 | . . . . 5 |
23 | 22 | ancom2s 561 | . . . 4 |
24 | 20, 23 | anim12d 333 | . . 3 |
25 | 17 | ralrimiva 2543 | . . . . . 6 |
26 | 5 | eleq1d 2239 | . . . . . . 7 |
27 | 26 | rspccva 2833 | . . . . . 6 |
28 | 25, 27 | sylan 281 | . . . . 5 |
29 | 28 | adantrr 476 | . . . 4 |
30 | 10 | eleq1d 2239 | . . . . . . 7 |
31 | 30 | rspccva 2833 | . . . . . 6 |
32 | 25, 31 | sylan 281 | . . . . 5 |
33 | 32 | adantrl 475 | . . . 4 |
34 | 29, 33 | lttri3d 8034 | . . 3 |
35 | 16, 1 | sselid 3145 | . . . 4 |
36 | simprr 527 | . . . . 5 | |
37 | 16, 36 | sselid 3145 | . . . 4 |
38 | 35, 37 | lttri3d 8034 | . . 3 |
39 | 24, 34, 38 | 3imtr4d 202 | . 2 |
40 | 14, 39 | impbid 128 | 1 |
Colors of variables: wff set class |
Syntax hints: wn 3 wi 4 wa 103 wb 104 wceq 1348 wex 1485 wcel 2141 wral 2448 wss 3121 class class class wbr 3989 cr 7773 clt 7954 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 609 ax-in2 610 ax-io 704 ax-5 1440 ax-7 1441 ax-gen 1442 ax-ie1 1486 ax-ie2 1487 ax-8 1497 ax-10 1498 ax-11 1499 ax-i12 1500 ax-bndl 1502 ax-4 1503 ax-17 1519 ax-i9 1523 ax-ial 1527 ax-i5r 1528 ax-13 2143 ax-14 2144 ax-ext 2152 ax-sep 4107 ax-pow 4160 ax-pr 4194 ax-un 4418 ax-setind 4521 ax-cnex 7865 ax-resscn 7866 ax-pre-ltirr 7886 ax-pre-apti 7889 |
This theorem depends on definitions: df-bi 116 df-3an 975 df-tru 1351 df-fal 1354 df-nf 1454 df-sb 1756 df-eu 2022 df-mo 2023 df-clab 2157 df-cleq 2163 df-clel 2166 df-nfc 2301 df-ne 2341 df-nel 2436 df-ral 2453 df-rex 2454 df-rab 2457 df-v 2732 df-dif 3123 df-un 3125 df-in 3127 df-ss 3134 df-pw 3568 df-sn 3589 df-pr 3590 df-op 3592 df-uni 3797 df-br 3990 df-opab 4051 df-xp 4617 df-pnf 7956 df-mnf 7957 df-ltxr 7959 |
This theorem is referenced by: eqord2 8403 reef11 11662 nninfdclemf1 12407 |
Copyright terms: Public domain | W3C validator |