ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  eqord1 Unicode version

Theorem eqord1 8402
Description: A strictly increasing real function on a subset of  RR is one-to-one. (Contributed by Mario Carneiro, 14-Jun-2014.) (Revised by Jim Kingdon, 20-Dec-2022.)
Hypotheses
Ref Expression
ltord.1  |-  ( x  =  y  ->  A  =  B )
ltord.2  |-  ( x  =  C  ->  A  =  M )
ltord.3  |-  ( x  =  D  ->  A  =  N )
ltord.4  |-  S  C_  RR
ltord.5  |-  ( (
ph  /\  x  e.  S )  ->  A  e.  RR )
ltord.6  |-  ( (
ph  /\  ( x  e.  S  /\  y  e.  S ) )  -> 
( x  <  y  ->  A  <  B ) )
Assertion
Ref Expression
eqord1  |-  ( (
ph  /\  ( C  e.  S  /\  D  e.  S ) )  -> 
( C  =  D  <-> 
M  =  N ) )
Distinct variable groups:    x, B    x, y, C    x, D, y   
x, M, y    x, N, y    ph, x, y   
x, S, y
Allowed substitution hints:    A( x, y)    B( y)

Proof of Theorem eqord1
StepHypRef Expression
1 simprl 526 . . . . . 6  |-  ( (
ph  /\  ( C  e.  S  /\  D  e.  S ) )  ->  C  e.  S )
2 elisset 2744 . . . . . 6  |-  ( C  e.  S  ->  E. x  x  =  C )
31, 2syl 14 . . . . 5  |-  ( (
ph  /\  ( C  e.  S  /\  D  e.  S ) )  ->  E. x  x  =  C )
43adantr 274 . . . 4  |-  ( ( ( ph  /\  ( C  e.  S  /\  D  e.  S )
)  /\  C  =  D )  ->  E. x  x  =  C )
5 ltord.2 . . . . . 6  |-  ( x  =  C  ->  A  =  M )
65adantl 275 . . . . 5  |-  ( ( ( ( ph  /\  ( C  e.  S  /\  D  e.  S
) )  /\  C  =  D )  /\  x  =  C )  ->  A  =  M )
7 eqeq2 2180 . . . . . . . 8  |-  ( C  =  D  ->  (
x  =  C  <->  x  =  D ) )
87adantl 275 . . . . . . 7  |-  ( ( ( ph  /\  ( C  e.  S  /\  D  e.  S )
)  /\  C  =  D )  ->  (
x  =  C  <->  x  =  D ) )
98biimpa 294 . . . . . 6  |-  ( ( ( ( ph  /\  ( C  e.  S  /\  D  e.  S
) )  /\  C  =  D )  /\  x  =  C )  ->  x  =  D )
10 ltord.3 . . . . . 6  |-  ( x  =  D  ->  A  =  N )
119, 10syl 14 . . . . 5  |-  ( ( ( ( ph  /\  ( C  e.  S  /\  D  e.  S
) )  /\  C  =  D )  /\  x  =  C )  ->  A  =  N )
126, 11eqtr3d 2205 . . . 4  |-  ( ( ( ( ph  /\  ( C  e.  S  /\  D  e.  S
) )  /\  C  =  D )  /\  x  =  C )  ->  M  =  N )
134, 12exlimddv 1891 . . 3  |-  ( ( ( ph  /\  ( C  e.  S  /\  D  e.  S )
)  /\  C  =  D )  ->  M  =  N )
1413ex 114 . 2  |-  ( (
ph  /\  ( C  e.  S  /\  D  e.  S ) )  -> 
( C  =  D  ->  M  =  N ) )
15 ltord.1 . . . . . 6  |-  ( x  =  y  ->  A  =  B )
16 ltord.4 . . . . . 6  |-  S  C_  RR
17 ltord.5 . . . . . 6  |-  ( (
ph  /\  x  e.  S )  ->  A  e.  RR )
18 ltord.6 . . . . . 6  |-  ( (
ph  /\  ( x  e.  S  /\  y  e.  S ) )  -> 
( x  <  y  ->  A  <  B ) )
1915, 5, 10, 16, 17, 18ltordlem 8401 . . . . 5  |-  ( (
ph  /\  ( C  e.  S  /\  D  e.  S ) )  -> 
( C  <  D  ->  M  <  N ) )
2019con3d 626 . . . 4  |-  ( (
ph  /\  ( C  e.  S  /\  D  e.  S ) )  -> 
( -.  M  < 
N  ->  -.  C  <  D ) )
2115, 10, 5, 16, 17, 18ltordlem 8401 . . . . . 6  |-  ( (
ph  /\  ( D  e.  S  /\  C  e.  S ) )  -> 
( D  <  C  ->  N  <  M ) )
2221con3d 626 . . . . 5  |-  ( (
ph  /\  ( D  e.  S  /\  C  e.  S ) )  -> 
( -.  N  < 
M  ->  -.  D  <  C ) )
2322ancom2s 561 . . . 4  |-  ( (
ph  /\  ( C  e.  S  /\  D  e.  S ) )  -> 
( -.  N  < 
M  ->  -.  D  <  C ) )
2420, 23anim12d 333 . . 3  |-  ( (
ph  /\  ( C  e.  S  /\  D  e.  S ) )  -> 
( ( -.  M  <  N  /\  -.  N  <  M )  ->  ( -.  C  <  D  /\  -.  D  <  C ) ) )
2517ralrimiva 2543 . . . . . 6  |-  ( ph  ->  A. x  e.  S  A  e.  RR )
265eleq1d 2239 . . . . . . 7  |-  ( x  =  C  ->  ( A  e.  RR  <->  M  e.  RR ) )
2726rspccva 2833 . . . . . 6  |-  ( ( A. x  e.  S  A  e.  RR  /\  C  e.  S )  ->  M  e.  RR )
2825, 27sylan 281 . . . . 5  |-  ( (
ph  /\  C  e.  S )  ->  M  e.  RR )
2928adantrr 476 . . . 4  |-  ( (
ph  /\  ( C  e.  S  /\  D  e.  S ) )  ->  M  e.  RR )
3010eleq1d 2239 . . . . . . 7  |-  ( x  =  D  ->  ( A  e.  RR  <->  N  e.  RR ) )
3130rspccva 2833 . . . . . 6  |-  ( ( A. x  e.  S  A  e.  RR  /\  D  e.  S )  ->  N  e.  RR )
3225, 31sylan 281 . . . . 5  |-  ( (
ph  /\  D  e.  S )  ->  N  e.  RR )
3332adantrl 475 . . . 4  |-  ( (
ph  /\  ( C  e.  S  /\  D  e.  S ) )  ->  N  e.  RR )
3429, 33lttri3d 8034 . . 3  |-  ( (
ph  /\  ( C  e.  S  /\  D  e.  S ) )  -> 
( M  =  N  <-> 
( -.  M  < 
N  /\  -.  N  <  M ) ) )
3516, 1sselid 3145 . . . 4  |-  ( (
ph  /\  ( C  e.  S  /\  D  e.  S ) )  ->  C  e.  RR )
36 simprr 527 . . . . 5  |-  ( (
ph  /\  ( C  e.  S  /\  D  e.  S ) )  ->  D  e.  S )
3716, 36sselid 3145 . . . 4  |-  ( (
ph  /\  ( C  e.  S  /\  D  e.  S ) )  ->  D  e.  RR )
3835, 37lttri3d 8034 . . 3  |-  ( (
ph  /\  ( C  e.  S  /\  D  e.  S ) )  -> 
( C  =  D  <-> 
( -.  C  < 
D  /\  -.  D  <  C ) ) )
3924, 34, 383imtr4d 202 . 2  |-  ( (
ph  /\  ( C  e.  S  /\  D  e.  S ) )  -> 
( M  =  N  ->  C  =  D ) )
4014, 39impbid 128 1  |-  ( (
ph  /\  ( C  e.  S  /\  D  e.  S ) )  -> 
( C  =  D  <-> 
M  =  N ) )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 103    <-> wb 104    = wceq 1348   E.wex 1485    e. wcel 2141   A.wral 2448    C_ wss 3121   class class class wbr 3989   RRcr 7773    < clt 7954
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 609  ax-in2 610  ax-io 704  ax-5 1440  ax-7 1441  ax-gen 1442  ax-ie1 1486  ax-ie2 1487  ax-8 1497  ax-10 1498  ax-11 1499  ax-i12 1500  ax-bndl 1502  ax-4 1503  ax-17 1519  ax-i9 1523  ax-ial 1527  ax-i5r 1528  ax-13 2143  ax-14 2144  ax-ext 2152  ax-sep 4107  ax-pow 4160  ax-pr 4194  ax-un 4418  ax-setind 4521  ax-cnex 7865  ax-resscn 7866  ax-pre-ltirr 7886  ax-pre-apti 7889
This theorem depends on definitions:  df-bi 116  df-3an 975  df-tru 1351  df-fal 1354  df-nf 1454  df-sb 1756  df-eu 2022  df-mo 2023  df-clab 2157  df-cleq 2163  df-clel 2166  df-nfc 2301  df-ne 2341  df-nel 2436  df-ral 2453  df-rex 2454  df-rab 2457  df-v 2732  df-dif 3123  df-un 3125  df-in 3127  df-ss 3134  df-pw 3568  df-sn 3589  df-pr 3590  df-op 3592  df-uni 3797  df-br 3990  df-opab 4051  df-xp 4617  df-pnf 7956  df-mnf 7957  df-ltxr 7959
This theorem is referenced by:  eqord2  8403  reef11  11662  nninfdclemf1  12407
  Copyright terms: Public domain W3C validator