| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > eqord1 | Unicode version | ||
| Description: A strictly increasing
real function on a subset of |
| Ref | Expression |
|---|---|
| ltord.1 |
|
| ltord.2 |
|
| ltord.3 |
|
| ltord.4 |
|
| ltord.5 |
|
| ltord.6 |
|
| Ref | Expression |
|---|---|
| eqord1 |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simprl 529 |
. . . . . 6
| |
| 2 | elisset 2777 |
. . . . . 6
| |
| 3 | 1, 2 | syl 14 |
. . . . 5
|
| 4 | 3 | adantr 276 |
. . . 4
|
| 5 | ltord.2 |
. . . . . 6
| |
| 6 | 5 | adantl 277 |
. . . . 5
|
| 7 | eqeq2 2206 |
. . . . . . . 8
| |
| 8 | 7 | adantl 277 |
. . . . . . 7
|
| 9 | 8 | biimpa 296 |
. . . . . 6
|
| 10 | ltord.3 |
. . . . . 6
| |
| 11 | 9, 10 | syl 14 |
. . . . 5
|
| 12 | 6, 11 | eqtr3d 2231 |
. . . 4
|
| 13 | 4, 12 | exlimddv 1913 |
. . 3
|
| 14 | 13 | ex 115 |
. 2
|
| 15 | ltord.1 |
. . . . . 6
| |
| 16 | ltord.4 |
. . . . . 6
| |
| 17 | ltord.5 |
. . . . . 6
| |
| 18 | ltord.6 |
. . . . . 6
| |
| 19 | 15, 5, 10, 16, 17, 18 | ltordlem 8509 |
. . . . 5
|
| 20 | 19 | con3d 632 |
. . . 4
|
| 21 | 15, 10, 5, 16, 17, 18 | ltordlem 8509 |
. . . . . 6
|
| 22 | 21 | con3d 632 |
. . . . 5
|
| 23 | 22 | ancom2s 566 |
. . . 4
|
| 24 | 20, 23 | anim12d 335 |
. . 3
|
| 25 | 17 | ralrimiva 2570 |
. . . . . 6
|
| 26 | 5 | eleq1d 2265 |
. . . . . . 7
|
| 27 | 26 | rspccva 2867 |
. . . . . 6
|
| 28 | 25, 27 | sylan 283 |
. . . . 5
|
| 29 | 28 | adantrr 479 |
. . . 4
|
| 30 | 10 | eleq1d 2265 |
. . . . . . 7
|
| 31 | 30 | rspccva 2867 |
. . . . . 6
|
| 32 | 25, 31 | sylan 283 |
. . . . 5
|
| 33 | 32 | adantrl 478 |
. . . 4
|
| 34 | 29, 33 | lttri3d 8141 |
. . 3
|
| 35 | 16, 1 | sselid 3181 |
. . . 4
|
| 36 | simprr 531 |
. . . . 5
| |
| 37 | 16, 36 | sselid 3181 |
. . . 4
|
| 38 | 35, 37 | lttri3d 8141 |
. . 3
|
| 39 | 24, 34, 38 | 3imtr4d 203 |
. 2
|
| 40 | 14, 39 | impbid 129 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-13 2169 ax-14 2170 ax-ext 2178 ax-sep 4151 ax-pow 4207 ax-pr 4242 ax-un 4468 ax-setind 4573 ax-cnex 7970 ax-resscn 7971 ax-pre-ltirr 7991 ax-pre-apti 7994 |
| This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-fal 1370 df-nf 1475 df-sb 1777 df-eu 2048 df-mo 2049 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-ne 2368 df-nel 2463 df-ral 2480 df-rex 2481 df-rab 2484 df-v 2765 df-dif 3159 df-un 3161 df-in 3163 df-ss 3170 df-pw 3607 df-sn 3628 df-pr 3629 df-op 3631 df-uni 3840 df-br 4034 df-opab 4095 df-xp 4669 df-pnf 8063 df-mnf 8064 df-ltxr 8066 |
| This theorem is referenced by: eqord2 8511 reef11 11864 nninfdclemf1 12669 |
| Copyright terms: Public domain | W3C validator |