ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  f1imaeq Unicode version

Theorem f1imaeq 5818
Description: Taking images under a one-to-one function preserves equality. (Contributed by Stefan O'Rear, 30-Oct-2014.)
Assertion
Ref Expression
f1imaeq  |-  ( ( F : A -1-1-> B  /\  ( C  C_  A  /\  D  C_  A ) )  ->  ( ( F " C )  =  ( F " D
)  <->  C  =  D
) )

Proof of Theorem f1imaeq
StepHypRef Expression
1 f1imass 5817 . . 3  |-  ( ( F : A -1-1-> B  /\  ( C  C_  A  /\  D  C_  A ) )  ->  ( ( F " C )  C_  ( F " D )  <-> 
C  C_  D )
)
2 f1imass 5817 . . . 4  |-  ( ( F : A -1-1-> B  /\  ( D  C_  A  /\  C  C_  A ) )  ->  ( ( F " D )  C_  ( F " C )  <-> 
D  C_  C )
)
32ancom2s 566 . . 3  |-  ( ( F : A -1-1-> B  /\  ( C  C_  A  /\  D  C_  A ) )  ->  ( ( F " D )  C_  ( F " C )  <-> 
D  C_  C )
)
41, 3anbi12d 473 . 2  |-  ( ( F : A -1-1-> B  /\  ( C  C_  A  /\  D  C_  A ) )  ->  ( (
( F " C
)  C_  ( F " D )  /\  ( F " D )  C_  ( F " C ) )  <->  ( C  C_  D  /\  D  C_  C
) ) )
5 eqss 3194 . 2  |-  ( ( F " C )  =  ( F " D )  <->  ( ( F " C )  C_  ( F " D )  /\  ( F " D )  C_  ( F " C ) ) )
6 eqss 3194 . 2  |-  ( C  =  D  <->  ( C  C_  D  /\  D  C_  C ) )
74, 5, 63bitr4g 223 1  |-  ( ( F : A -1-1-> B  /\  ( C  C_  A  /\  D  C_  A ) )  ->  ( ( F " C )  =  ( F " D
)  <->  C  =  D
) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105    = wceq 1364    C_ wss 3153   "cima 4662   -1-1->wf1 5251
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-14 2167  ax-ext 2175  ax-sep 4147  ax-pow 4203  ax-pr 4238
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-nf 1472  df-sb 1774  df-eu 2045  df-mo 2046  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-ral 2477  df-rex 2478  df-v 2762  df-sbc 2986  df-un 3157  df-in 3159  df-ss 3166  df-pw 3603  df-sn 3624  df-pr 3625  df-op 3627  df-uni 3836  df-br 4030  df-opab 4091  df-id 4324  df-xp 4665  df-rel 4666  df-cnv 4667  df-co 4668  df-dm 4669  df-rn 4670  df-res 4671  df-ima 4672  df-iota 5215  df-fun 5256  df-fn 5257  df-f 5258  df-f1 5259  df-fv 5262
This theorem is referenced by:  hmeoimaf1o  14482
  Copyright terms: Public domain W3C validator