ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  f1imaeq Unicode version

Theorem f1imaeq 5743
Description: Taking images under a one-to-one function preserves equality. (Contributed by Stefan O'Rear, 30-Oct-2014.)
Assertion
Ref Expression
f1imaeq  |-  ( ( F : A -1-1-> B  /\  ( C  C_  A  /\  D  C_  A ) )  ->  ( ( F " C )  =  ( F " D
)  <->  C  =  D
) )

Proof of Theorem f1imaeq
StepHypRef Expression
1 f1imass 5742 . . 3  |-  ( ( F : A -1-1-> B  /\  ( C  C_  A  /\  D  C_  A ) )  ->  ( ( F " C )  C_  ( F " D )  <-> 
C  C_  D )
)
2 f1imass 5742 . . . 4  |-  ( ( F : A -1-1-> B  /\  ( D  C_  A  /\  C  C_  A ) )  ->  ( ( F " D )  C_  ( F " C )  <-> 
D  C_  C )
)
32ancom2s 556 . . 3  |-  ( ( F : A -1-1-> B  /\  ( C  C_  A  /\  D  C_  A ) )  ->  ( ( F " D )  C_  ( F " C )  <-> 
D  C_  C )
)
41, 3anbi12d 465 . 2  |-  ( ( F : A -1-1-> B  /\  ( C  C_  A  /\  D  C_  A ) )  ->  ( (
( F " C
)  C_  ( F " D )  /\  ( F " D )  C_  ( F " C ) )  <->  ( C  C_  D  /\  D  C_  C
) ) )
5 eqss 3157 . 2  |-  ( ( F " C )  =  ( F " D )  <->  ( ( F " C )  C_  ( F " D )  /\  ( F " D )  C_  ( F " C ) ) )
6 eqss 3157 . 2  |-  ( C  =  D  <->  ( C  C_  D  /\  D  C_  C ) )
74, 5, 63bitr4g 222 1  |-  ( ( F : A -1-1-> B  /\  ( C  C_  A  /\  D  C_  A ) )  ->  ( ( F " C )  =  ( F " D
)  <->  C  =  D
) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103    <-> wb 104    = wceq 1343    C_ wss 3116   "cima 4607   -1-1->wf1 5185
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 699  ax-5 1435  ax-7 1436  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-10 1493  ax-11 1494  ax-i12 1495  ax-bndl 1497  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522  ax-i5r 1523  ax-14 2139  ax-ext 2147  ax-sep 4100  ax-pow 4153  ax-pr 4187
This theorem depends on definitions:  df-bi 116  df-3an 970  df-tru 1346  df-nf 1449  df-sb 1751  df-eu 2017  df-mo 2018  df-clab 2152  df-cleq 2158  df-clel 2161  df-nfc 2297  df-ral 2449  df-rex 2450  df-v 2728  df-sbc 2952  df-un 3120  df-in 3122  df-ss 3129  df-pw 3561  df-sn 3582  df-pr 3583  df-op 3585  df-uni 3790  df-br 3983  df-opab 4044  df-id 4271  df-xp 4610  df-rel 4611  df-cnv 4612  df-co 4613  df-dm 4614  df-rn 4615  df-res 4616  df-ima 4617  df-iota 5153  df-fun 5190  df-fn 5191  df-f 5192  df-f1 5193  df-fv 5196
This theorem is referenced by:  hmeoimaf1o  12964
  Copyright terms: Public domain W3C validator