Users' Mathboxes Mathbox for BJ < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >   Mathboxes  >  bj-unex GIF version

Theorem bj-unex 14756
Description: unex 4443 from bounded separation. (Contributed by BJ, 13-Nov-2019.) (Proof modification is discouraged.)
Hypotheses
Ref Expression
bj-unex.1 𝐴 ∈ V
bj-unex.2 𝐵 ∈ V
Assertion
Ref Expression
bj-unex (𝐴𝐵) ∈ V

Proof of Theorem bj-unex
StepHypRef Expression
1 bj-unex.1 . . 3 𝐴 ∈ V
2 bj-unex.2 . . 3 𝐵 ∈ V
31, 2unipr 3825 . 2 {𝐴, 𝐵} = (𝐴𝐵)
4 bj-prexg 14748 . . . 4 ((𝐴 ∈ V ∧ 𝐵 ∈ V) → {𝐴, 𝐵} ∈ V)
51, 2, 4mp2an 426 . . 3 {𝐴, 𝐵} ∈ V
65bj-uniex 14754 . 2 {𝐴, 𝐵} ∈ V
73, 6eqeltrri 2251 1 (𝐴𝐵) ∈ V
Colors of variables: wff set class
Syntax hints:  wcel 2148  Vcvv 2739  cun 3129  {cpr 3595   cuni 3811
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-13 2150  ax-14 2151  ax-ext 2159  ax-pr 4211  ax-un 4435  ax-bd0 14650  ax-bdor 14653  ax-bdex 14656  ax-bdeq 14657  ax-bdel 14658  ax-bdsb 14659  ax-bdsep 14721
This theorem depends on definitions:  df-bi 117  df-tru 1356  df-nf 1461  df-sb 1763  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-rex 2461  df-v 2741  df-un 3135  df-sn 3600  df-pr 3601  df-uni 3812  df-bdc 14678
This theorem is referenced by:  bdunexb  14757  bj-unexg  14758
  Copyright terms: Public domain W3C validator