| Mathbox for BJ |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > Mathboxes > bj-unex | GIF version | ||
| Description: unex 4496 from bounded separation. (Contributed by BJ, 13-Nov-2019.) (Proof modification is discouraged.) |
| Ref | Expression |
|---|---|
| bj-unex.1 | ⊢ 𝐴 ∈ V |
| bj-unex.2 | ⊢ 𝐵 ∈ V |
| Ref | Expression |
|---|---|
| bj-unex | ⊢ (𝐴 ∪ 𝐵) ∈ V |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | bj-unex.1 | . . 3 ⊢ 𝐴 ∈ V | |
| 2 | bj-unex.2 | . . 3 ⊢ 𝐵 ∈ V | |
| 3 | 1, 2 | unipr 3870 | . 2 ⊢ ∪ {𝐴, 𝐵} = (𝐴 ∪ 𝐵) |
| 4 | bj-prexg 15985 | . . . 4 ⊢ ((𝐴 ∈ V ∧ 𝐵 ∈ V) → {𝐴, 𝐵} ∈ V) | |
| 5 | 1, 2, 4 | mp2an 426 | . . 3 ⊢ {𝐴, 𝐵} ∈ V |
| 6 | 5 | bj-uniex 15991 | . 2 ⊢ ∪ {𝐴, 𝐵} ∈ V |
| 7 | 3, 6 | eqeltrri 2280 | 1 ⊢ (𝐴 ∪ 𝐵) ∈ V |
| Colors of variables: wff set class |
| Syntax hints: ∈ wcel 2177 Vcvv 2773 ∪ cun 3168 {cpr 3639 ∪ cuni 3856 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-13 2179 ax-14 2180 ax-ext 2188 ax-pr 4261 ax-un 4488 ax-bd0 15887 ax-bdor 15890 ax-bdex 15893 ax-bdeq 15894 ax-bdel 15895 ax-bdsb 15896 ax-bdsep 15958 |
| This theorem depends on definitions: df-bi 117 df-tru 1376 df-nf 1485 df-sb 1787 df-clab 2193 df-cleq 2199 df-clel 2202 df-nfc 2338 df-rex 2491 df-v 2775 df-un 3174 df-sn 3644 df-pr 3645 df-uni 3857 df-bdc 15915 |
| This theorem is referenced by: bdunexb 15994 bj-unexg 15995 |
| Copyright terms: Public domain | W3C validator |