![]() |
Mathbox for BJ |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > Mathboxes > bj-unex | GIF version |
Description: unex 4473 from bounded separation. (Contributed by BJ, 13-Nov-2019.) (Proof modification is discouraged.) |
Ref | Expression |
---|---|
bj-unex.1 | ⊢ 𝐴 ∈ V |
bj-unex.2 | ⊢ 𝐵 ∈ V |
Ref | Expression |
---|---|
bj-unex | ⊢ (𝐴 ∪ 𝐵) ∈ V |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | bj-unex.1 | . . 3 ⊢ 𝐴 ∈ V | |
2 | bj-unex.2 | . . 3 ⊢ 𝐵 ∈ V | |
3 | 1, 2 | unipr 3850 | . 2 ⊢ ∪ {𝐴, 𝐵} = (𝐴 ∪ 𝐵) |
4 | bj-prexg 15473 | . . . 4 ⊢ ((𝐴 ∈ V ∧ 𝐵 ∈ V) → {𝐴, 𝐵} ∈ V) | |
5 | 1, 2, 4 | mp2an 426 | . . 3 ⊢ {𝐴, 𝐵} ∈ V |
6 | 5 | bj-uniex 15479 | . 2 ⊢ ∪ {𝐴, 𝐵} ∈ V |
7 | 3, 6 | eqeltrri 2267 | 1 ⊢ (𝐴 ∪ 𝐵) ∈ V |
Colors of variables: wff set class |
Syntax hints: ∈ wcel 2164 Vcvv 2760 ∪ cun 3152 {cpr 3620 ∪ cuni 3836 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1458 ax-7 1459 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-8 1515 ax-10 1516 ax-11 1517 ax-i12 1518 ax-bndl 1520 ax-4 1521 ax-17 1537 ax-i9 1541 ax-ial 1545 ax-i5r 1546 ax-13 2166 ax-14 2167 ax-ext 2175 ax-pr 4239 ax-un 4465 ax-bd0 15375 ax-bdor 15378 ax-bdex 15381 ax-bdeq 15382 ax-bdel 15383 ax-bdsb 15384 ax-bdsep 15446 |
This theorem depends on definitions: df-bi 117 df-tru 1367 df-nf 1472 df-sb 1774 df-clab 2180 df-cleq 2186 df-clel 2189 df-nfc 2325 df-rex 2478 df-v 2762 df-un 3158 df-sn 3625 df-pr 3626 df-uni 3837 df-bdc 15403 |
This theorem is referenced by: bdunexb 15482 bj-unexg 15483 |
Copyright terms: Public domain | W3C validator |