Mathbox for BJ |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > Mathboxes > bj-unex | GIF version |
Description: unex 4426 from bounded separation. (Contributed by BJ, 13-Nov-2019.) (Proof modification is discouraged.) |
Ref | Expression |
---|---|
bj-unex.1 | ⊢ 𝐴 ∈ V |
bj-unex.2 | ⊢ 𝐵 ∈ V |
Ref | Expression |
---|---|
bj-unex | ⊢ (𝐴 ∪ 𝐵) ∈ V |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | bj-unex.1 | . . 3 ⊢ 𝐴 ∈ V | |
2 | bj-unex.2 | . . 3 ⊢ 𝐵 ∈ V | |
3 | 1, 2 | unipr 3810 | . 2 ⊢ ∪ {𝐴, 𝐵} = (𝐴 ∪ 𝐵) |
4 | bj-prexg 13946 | . . . 4 ⊢ ((𝐴 ∈ V ∧ 𝐵 ∈ V) → {𝐴, 𝐵} ∈ V) | |
5 | 1, 2, 4 | mp2an 424 | . . 3 ⊢ {𝐴, 𝐵} ∈ V |
6 | 5 | bj-uniex 13952 | . 2 ⊢ ∪ {𝐴, 𝐵} ∈ V |
7 | 3, 6 | eqeltrri 2244 | 1 ⊢ (𝐴 ∪ 𝐵) ∈ V |
Colors of variables: wff set class |
Syntax hints: ∈ wcel 2141 Vcvv 2730 ∪ cun 3119 {cpr 3584 ∪ cuni 3796 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 704 ax-5 1440 ax-7 1441 ax-gen 1442 ax-ie1 1486 ax-ie2 1487 ax-8 1497 ax-10 1498 ax-11 1499 ax-i12 1500 ax-bndl 1502 ax-4 1503 ax-17 1519 ax-i9 1523 ax-ial 1527 ax-i5r 1528 ax-13 2143 ax-14 2144 ax-ext 2152 ax-pr 4194 ax-un 4418 ax-bd0 13848 ax-bdor 13851 ax-bdex 13854 ax-bdeq 13855 ax-bdel 13856 ax-bdsb 13857 ax-bdsep 13919 |
This theorem depends on definitions: df-bi 116 df-tru 1351 df-nf 1454 df-sb 1756 df-clab 2157 df-cleq 2163 df-clel 2166 df-nfc 2301 df-rex 2454 df-v 2732 df-un 3125 df-sn 3589 df-pr 3590 df-uni 3797 df-bdc 13876 |
This theorem is referenced by: bdunexb 13955 bj-unexg 13956 |
Copyright terms: Public domain | W3C validator |