| Mathbox for BJ |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > Mathboxes > bj-unex | GIF version | ||
| Description: unex 4531 from bounded separation. (Contributed by BJ, 13-Nov-2019.) (Proof modification is discouraged.) |
| Ref | Expression |
|---|---|
| bj-unex.1 | ⊢ 𝐴 ∈ V |
| bj-unex.2 | ⊢ 𝐵 ∈ V |
| Ref | Expression |
|---|---|
| bj-unex | ⊢ (𝐴 ∪ 𝐵) ∈ V |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | bj-unex.1 | . . 3 ⊢ 𝐴 ∈ V | |
| 2 | bj-unex.2 | . . 3 ⊢ 𝐵 ∈ V | |
| 3 | 1, 2 | unipr 3901 | . 2 ⊢ ∪ {𝐴, 𝐵} = (𝐴 ∪ 𝐵) |
| 4 | bj-prexg 16232 | . . . 4 ⊢ ((𝐴 ∈ V ∧ 𝐵 ∈ V) → {𝐴, 𝐵} ∈ V) | |
| 5 | 1, 2, 4 | mp2an 426 | . . 3 ⊢ {𝐴, 𝐵} ∈ V |
| 6 | 5 | bj-uniex 16238 | . 2 ⊢ ∪ {𝐴, 𝐵} ∈ V |
| 7 | 3, 6 | eqeltrri 2303 | 1 ⊢ (𝐴 ∪ 𝐵) ∈ V |
| Colors of variables: wff set class |
| Syntax hints: ∈ wcel 2200 Vcvv 2799 ∪ cun 3195 {cpr 3667 ∪ cuni 3887 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-13 2202 ax-14 2203 ax-ext 2211 ax-pr 4292 ax-un 4523 ax-bd0 16134 ax-bdor 16137 ax-bdex 16140 ax-bdeq 16141 ax-bdel 16142 ax-bdsb 16143 ax-bdsep 16205 |
| This theorem depends on definitions: df-bi 117 df-tru 1398 df-nf 1507 df-sb 1809 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-rex 2514 df-v 2801 df-un 3201 df-sn 3672 df-pr 3673 df-uni 3888 df-bdc 16162 |
| This theorem is referenced by: bdunexb 16241 bj-unexg 16242 |
| Copyright terms: Public domain | W3C validator |