| Mathbox for BJ |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > Mathboxes > bj-unex | GIF version | ||
| Description: unex 4486 from bounded separation. (Contributed by BJ, 13-Nov-2019.) (Proof modification is discouraged.) |
| Ref | Expression |
|---|---|
| bj-unex.1 | ⊢ 𝐴 ∈ V |
| bj-unex.2 | ⊢ 𝐵 ∈ V |
| Ref | Expression |
|---|---|
| bj-unex | ⊢ (𝐴 ∪ 𝐵) ∈ V |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | bj-unex.1 | . . 3 ⊢ 𝐴 ∈ V | |
| 2 | bj-unex.2 | . . 3 ⊢ 𝐵 ∈ V | |
| 3 | 1, 2 | unipr 3863 | . 2 ⊢ ∪ {𝐴, 𝐵} = (𝐴 ∪ 𝐵) |
| 4 | bj-prexg 15711 | . . . 4 ⊢ ((𝐴 ∈ V ∧ 𝐵 ∈ V) → {𝐴, 𝐵} ∈ V) | |
| 5 | 1, 2, 4 | mp2an 426 | . . 3 ⊢ {𝐴, 𝐵} ∈ V |
| 6 | 5 | bj-uniex 15717 | . 2 ⊢ ∪ {𝐴, 𝐵} ∈ V |
| 7 | 3, 6 | eqeltrri 2278 | 1 ⊢ (𝐴 ∪ 𝐵) ∈ V |
| Colors of variables: wff set class |
| Syntax hints: ∈ wcel 2175 Vcvv 2771 ∪ cun 3163 {cpr 3633 ∪ cuni 3849 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1469 ax-7 1470 ax-gen 1471 ax-ie1 1515 ax-ie2 1516 ax-8 1526 ax-10 1527 ax-11 1528 ax-i12 1529 ax-bndl 1531 ax-4 1532 ax-17 1548 ax-i9 1552 ax-ial 1556 ax-i5r 1557 ax-13 2177 ax-14 2178 ax-ext 2186 ax-pr 4252 ax-un 4478 ax-bd0 15613 ax-bdor 15616 ax-bdex 15619 ax-bdeq 15620 ax-bdel 15621 ax-bdsb 15622 ax-bdsep 15684 |
| This theorem depends on definitions: df-bi 117 df-tru 1375 df-nf 1483 df-sb 1785 df-clab 2191 df-cleq 2197 df-clel 2200 df-nfc 2336 df-rex 2489 df-v 2773 df-un 3169 df-sn 3638 df-pr 3639 df-uni 3850 df-bdc 15641 |
| This theorem is referenced by: bdunexb 15720 bj-unexg 15721 |
| Copyright terms: Public domain | W3C validator |