Users' Mathboxes Mathbox for BJ < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >   Mathboxes  >  bj-unex GIF version

Theorem bj-unex 13801
Description: unex 4419 from bounded separation. (Contributed by BJ, 13-Nov-2019.) (Proof modification is discouraged.)
Hypotheses
Ref Expression
bj-unex.1 𝐴 ∈ V
bj-unex.2 𝐵 ∈ V
Assertion
Ref Expression
bj-unex (𝐴𝐵) ∈ V

Proof of Theorem bj-unex
StepHypRef Expression
1 bj-unex.1 . . 3 𝐴 ∈ V
2 bj-unex.2 . . 3 𝐵 ∈ V
31, 2unipr 3803 . 2 {𝐴, 𝐵} = (𝐴𝐵)
4 bj-prexg 13793 . . . 4 ((𝐴 ∈ V ∧ 𝐵 ∈ V) → {𝐴, 𝐵} ∈ V)
51, 2, 4mp2an 423 . . 3 {𝐴, 𝐵} ∈ V
65bj-uniex 13799 . 2 {𝐴, 𝐵} ∈ V
73, 6eqeltrri 2240 1 (𝐴𝐵) ∈ V
Colors of variables: wff set class
Syntax hints:  wcel 2136  Vcvv 2726  cun 3114  {cpr 3577   cuni 3789
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 699  ax-5 1435  ax-7 1436  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-10 1493  ax-11 1494  ax-i12 1495  ax-bndl 1497  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522  ax-i5r 1523  ax-13 2138  ax-14 2139  ax-ext 2147  ax-pr 4187  ax-un 4411  ax-bd0 13695  ax-bdor 13698  ax-bdex 13701  ax-bdeq 13702  ax-bdel 13703  ax-bdsb 13704  ax-bdsep 13766
This theorem depends on definitions:  df-bi 116  df-tru 1346  df-nf 1449  df-sb 1751  df-clab 2152  df-cleq 2158  df-clel 2161  df-nfc 2297  df-rex 2450  df-v 2728  df-un 3120  df-sn 3582  df-pr 3583  df-uni 3790  df-bdc 13723
This theorem is referenced by:  bdunexb  13802  bj-unexg  13803
  Copyright terms: Public domain W3C validator