Users' Mathboxes Mathbox for BJ < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >   Mathboxes  >  bj-unex GIF version

Theorem bj-unex 15411
Description: unex 4472 from bounded separation. (Contributed by BJ, 13-Nov-2019.) (Proof modification is discouraged.)
Hypotheses
Ref Expression
bj-unex.1 𝐴 ∈ V
bj-unex.2 𝐵 ∈ V
Assertion
Ref Expression
bj-unex (𝐴𝐵) ∈ V

Proof of Theorem bj-unex
StepHypRef Expression
1 bj-unex.1 . . 3 𝐴 ∈ V
2 bj-unex.2 . . 3 𝐵 ∈ V
31, 2unipr 3849 . 2 {𝐴, 𝐵} = (𝐴𝐵)
4 bj-prexg 15403 . . . 4 ((𝐴 ∈ V ∧ 𝐵 ∈ V) → {𝐴, 𝐵} ∈ V)
51, 2, 4mp2an 426 . . 3 {𝐴, 𝐵} ∈ V
65bj-uniex 15409 . 2 {𝐴, 𝐵} ∈ V
73, 6eqeltrri 2267 1 (𝐴𝐵) ∈ V
Colors of variables: wff set class
Syntax hints:  wcel 2164  Vcvv 2760  cun 3151  {cpr 3619   cuni 3835
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-13 2166  ax-14 2167  ax-ext 2175  ax-pr 4238  ax-un 4464  ax-bd0 15305  ax-bdor 15308  ax-bdex 15311  ax-bdeq 15312  ax-bdel 15313  ax-bdsb 15314  ax-bdsep 15376
This theorem depends on definitions:  df-bi 117  df-tru 1367  df-nf 1472  df-sb 1774  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-rex 2478  df-v 2762  df-un 3157  df-sn 3624  df-pr 3625  df-uni 3836  df-bdc 15333
This theorem is referenced by:  bdunexb  15412  bj-unexg  15413
  Copyright terms: Public domain W3C validator