Users' Mathboxes Mathbox for BJ < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >   Mathboxes  >  bj-unexg Unicode version

Theorem bj-unexg 14813
Description: unexg 4445 from bounded separation. (Contributed by BJ, 13-Nov-2019.) (Proof modification is discouraged.)
Assertion
Ref Expression
bj-unexg  |-  ( ( A  e.  V  /\  B  e.  W )  ->  ( A  u.  B
)  e.  _V )

Proof of Theorem bj-unexg
Dummy variables  x  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 uneq1 3284 . . 3  |-  ( x  =  A  ->  (
x  u.  y )  =  ( A  u.  y ) )
2 eleq1 2240 . . 3  |-  ( ( x  u.  y )  =  ( A  u.  y )  ->  (
( x  u.  y
)  e.  _V  <->  ( A  u.  y )  e.  _V ) )
31, 2syl 14 . 2  |-  ( x  =  A  ->  (
( x  u.  y
)  e.  _V  <->  ( A  u.  y )  e.  _V ) )
4 uneq2 3285 . . 3  |-  ( y  =  B  ->  ( A  u.  y )  =  ( A  u.  B ) )
5 eleq1 2240 . . 3  |-  ( ( A  u.  y )  =  ( A  u.  B )  ->  (
( A  u.  y
)  e.  _V  <->  ( A  u.  B )  e.  _V ) )
64, 5syl 14 . 2  |-  ( y  =  B  ->  (
( A  u.  y
)  e.  _V  <->  ( A  u.  B )  e.  _V ) )
7 vex 2742 . . 3  |-  x  e. 
_V
8 vex 2742 . . 3  |-  y  e. 
_V
97, 8bj-unex 14811 . 2  |-  ( x  u.  y )  e. 
_V
103, 6, 9vtocl2g 2803 1  |-  ( ( A  e.  V  /\  B  e.  W )  ->  ( A  u.  B
)  e.  _V )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105    = wceq 1353    e. wcel 2148   _Vcvv 2739    u. cun 3129
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-13 2150  ax-14 2151  ax-ext 2159  ax-pr 4211  ax-un 4435  ax-bd0 14705  ax-bdor 14708  ax-bdex 14711  ax-bdeq 14712  ax-bdel 14713  ax-bdsb 14714  ax-bdsep 14776
This theorem depends on definitions:  df-bi 117  df-tru 1356  df-nf 1461  df-sb 1763  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-rex 2461  df-v 2741  df-un 3135  df-sn 3600  df-pr 3601  df-uni 3812  df-bdc 14733
This theorem is referenced by:  bj-sucexg  14814
  Copyright terms: Public domain W3C validator