Users' Mathboxes Mathbox for BJ < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >   Mathboxes  >  bj-unexg Unicode version

Theorem bj-unexg 13803
Description: unexg 4421 from bounded separation. (Contributed by BJ, 13-Nov-2019.) (Proof modification is discouraged.)
Assertion
Ref Expression
bj-unexg  |-  ( ( A  e.  V  /\  B  e.  W )  ->  ( A  u.  B
)  e.  _V )

Proof of Theorem bj-unexg
Dummy variables  x  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 uneq1 3269 . . 3  |-  ( x  =  A  ->  (
x  u.  y )  =  ( A  u.  y ) )
2 eleq1 2229 . . 3  |-  ( ( x  u.  y )  =  ( A  u.  y )  ->  (
( x  u.  y
)  e.  _V  <->  ( A  u.  y )  e.  _V ) )
31, 2syl 14 . 2  |-  ( x  =  A  ->  (
( x  u.  y
)  e.  _V  <->  ( A  u.  y )  e.  _V ) )
4 uneq2 3270 . . 3  |-  ( y  =  B  ->  ( A  u.  y )  =  ( A  u.  B ) )
5 eleq1 2229 . . 3  |-  ( ( A  u.  y )  =  ( A  u.  B )  ->  (
( A  u.  y
)  e.  _V  <->  ( A  u.  B )  e.  _V ) )
64, 5syl 14 . 2  |-  ( y  =  B  ->  (
( A  u.  y
)  e.  _V  <->  ( A  u.  B )  e.  _V ) )
7 vex 2729 . . 3  |-  x  e. 
_V
8 vex 2729 . . 3  |-  y  e. 
_V
97, 8bj-unex 13801 . 2  |-  ( x  u.  y )  e. 
_V
103, 6, 9vtocl2g 2790 1  |-  ( ( A  e.  V  /\  B  e.  W )  ->  ( A  u.  B
)  e.  _V )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103    <-> wb 104    = wceq 1343    e. wcel 2136   _Vcvv 2726    u. cun 3114
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 699  ax-5 1435  ax-7 1436  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-10 1493  ax-11 1494  ax-i12 1495  ax-bndl 1497  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522  ax-i5r 1523  ax-13 2138  ax-14 2139  ax-ext 2147  ax-pr 4187  ax-un 4411  ax-bd0 13695  ax-bdor 13698  ax-bdex 13701  ax-bdeq 13702  ax-bdel 13703  ax-bdsb 13704  ax-bdsep 13766
This theorem depends on definitions:  df-bi 116  df-tru 1346  df-nf 1449  df-sb 1751  df-clab 2152  df-cleq 2158  df-clel 2161  df-nfc 2297  df-rex 2450  df-v 2728  df-un 3120  df-sn 3582  df-pr 3583  df-uni 3790  df-bdc 13723
This theorem is referenced by:  bj-sucexg  13804
  Copyright terms: Public domain W3C validator