Users' Mathboxes Mathbox for BJ < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >   Mathboxes  >  bj-unexg Unicode version

Theorem bj-unexg 16284
Description: unexg 4534 from bounded separation. (Contributed by BJ, 13-Nov-2019.) (Proof modification is discouraged.)
Assertion
Ref Expression
bj-unexg  |-  ( ( A  e.  V  /\  B  e.  W )  ->  ( A  u.  B
)  e.  _V )

Proof of Theorem bj-unexg
Dummy variables  x  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 uneq1 3351 . . 3  |-  ( x  =  A  ->  (
x  u.  y )  =  ( A  u.  y ) )
2 eleq1 2292 . . 3  |-  ( ( x  u.  y )  =  ( A  u.  y )  ->  (
( x  u.  y
)  e.  _V  <->  ( A  u.  y )  e.  _V ) )
31, 2syl 14 . 2  |-  ( x  =  A  ->  (
( x  u.  y
)  e.  _V  <->  ( A  u.  y )  e.  _V ) )
4 uneq2 3352 . . 3  |-  ( y  =  B  ->  ( A  u.  y )  =  ( A  u.  B ) )
5 eleq1 2292 . . 3  |-  ( ( A  u.  y )  =  ( A  u.  B )  ->  (
( A  u.  y
)  e.  _V  <->  ( A  u.  B )  e.  _V ) )
64, 5syl 14 . 2  |-  ( y  =  B  ->  (
( A  u.  y
)  e.  _V  <->  ( A  u.  B )  e.  _V ) )
7 vex 2802 . . 3  |-  x  e. 
_V
8 vex 2802 . . 3  |-  y  e. 
_V
97, 8bj-unex 16282 . 2  |-  ( x  u.  y )  e. 
_V
103, 6, 9vtocl2g 2865 1  |-  ( ( A  e.  V  /\  B  e.  W )  ->  ( A  u.  B
)  e.  _V )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105    = wceq 1395    e. wcel 2200   _Vcvv 2799    u. cun 3195
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-13 2202  ax-14 2203  ax-ext 2211  ax-pr 4293  ax-un 4524  ax-bd0 16176  ax-bdor 16179  ax-bdex 16182  ax-bdeq 16183  ax-bdel 16184  ax-bdsb 16185  ax-bdsep 16247
This theorem depends on definitions:  df-bi 117  df-tru 1398  df-nf 1507  df-sb 1809  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-rex 2514  df-v 2801  df-un 3201  df-sn 3672  df-pr 3673  df-uni 3889  df-bdc 16204
This theorem is referenced by:  bj-sucexg  16285
  Copyright terms: Public domain W3C validator