Users' Mathboxes Mathbox for BJ < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >   Mathboxes  >  bj-unexg Unicode version

Theorem bj-unexg 14213
Description: unexg 4437 from bounded separation. (Contributed by BJ, 13-Nov-2019.) (Proof modification is discouraged.)
Assertion
Ref Expression
bj-unexg  |-  ( ( A  e.  V  /\  B  e.  W )  ->  ( A  u.  B
)  e.  _V )

Proof of Theorem bj-unexg
Dummy variables  x  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 uneq1 3280 . . 3  |-  ( x  =  A  ->  (
x  u.  y )  =  ( A  u.  y ) )
2 eleq1 2238 . . 3  |-  ( ( x  u.  y )  =  ( A  u.  y )  ->  (
( x  u.  y
)  e.  _V  <->  ( A  u.  y )  e.  _V ) )
31, 2syl 14 . 2  |-  ( x  =  A  ->  (
( x  u.  y
)  e.  _V  <->  ( A  u.  y )  e.  _V ) )
4 uneq2 3281 . . 3  |-  ( y  =  B  ->  ( A  u.  y )  =  ( A  u.  B ) )
5 eleq1 2238 . . 3  |-  ( ( A  u.  y )  =  ( A  u.  B )  ->  (
( A  u.  y
)  e.  _V  <->  ( A  u.  B )  e.  _V ) )
64, 5syl 14 . 2  |-  ( y  =  B  ->  (
( A  u.  y
)  e.  _V  <->  ( A  u.  B )  e.  _V ) )
7 vex 2738 . . 3  |-  x  e. 
_V
8 vex 2738 . . 3  |-  y  e. 
_V
97, 8bj-unex 14211 . 2  |-  ( x  u.  y )  e. 
_V
103, 6, 9vtocl2g 2799 1  |-  ( ( A  e.  V  /\  B  e.  W )  ->  ( A  u.  B
)  e.  _V )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105    = wceq 1353    e. wcel 2146   _Vcvv 2735    u. cun 3125
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 709  ax-5 1445  ax-7 1446  ax-gen 1447  ax-ie1 1491  ax-ie2 1492  ax-8 1502  ax-10 1503  ax-11 1504  ax-i12 1505  ax-bndl 1507  ax-4 1508  ax-17 1524  ax-i9 1528  ax-ial 1532  ax-i5r 1533  ax-13 2148  ax-14 2149  ax-ext 2157  ax-pr 4203  ax-un 4427  ax-bd0 14105  ax-bdor 14108  ax-bdex 14111  ax-bdeq 14112  ax-bdel 14113  ax-bdsb 14114  ax-bdsep 14176
This theorem depends on definitions:  df-bi 117  df-tru 1356  df-nf 1459  df-sb 1761  df-clab 2162  df-cleq 2168  df-clel 2171  df-nfc 2306  df-rex 2459  df-v 2737  df-un 3131  df-sn 3595  df-pr 3596  df-uni 3806  df-bdc 14133
This theorem is referenced by:  bj-sucexg  14214
  Copyright terms: Public domain W3C validator