Users' Mathboxes Mathbox for BJ < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >   Mathboxes  >  bj-unexg Unicode version

Theorem bj-unexg 15413
Description: unexg 4474 from bounded separation. (Contributed by BJ, 13-Nov-2019.) (Proof modification is discouraged.)
Assertion
Ref Expression
bj-unexg  |-  ( ( A  e.  V  /\  B  e.  W )  ->  ( A  u.  B
)  e.  _V )

Proof of Theorem bj-unexg
Dummy variables  x  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 uneq1 3306 . . 3  |-  ( x  =  A  ->  (
x  u.  y )  =  ( A  u.  y ) )
2 eleq1 2256 . . 3  |-  ( ( x  u.  y )  =  ( A  u.  y )  ->  (
( x  u.  y
)  e.  _V  <->  ( A  u.  y )  e.  _V ) )
31, 2syl 14 . 2  |-  ( x  =  A  ->  (
( x  u.  y
)  e.  _V  <->  ( A  u.  y )  e.  _V ) )
4 uneq2 3307 . . 3  |-  ( y  =  B  ->  ( A  u.  y )  =  ( A  u.  B ) )
5 eleq1 2256 . . 3  |-  ( ( A  u.  y )  =  ( A  u.  B )  ->  (
( A  u.  y
)  e.  _V  <->  ( A  u.  B )  e.  _V ) )
64, 5syl 14 . 2  |-  ( y  =  B  ->  (
( A  u.  y
)  e.  _V  <->  ( A  u.  B )  e.  _V ) )
7 vex 2763 . . 3  |-  x  e. 
_V
8 vex 2763 . . 3  |-  y  e. 
_V
97, 8bj-unex 15411 . 2  |-  ( x  u.  y )  e. 
_V
103, 6, 9vtocl2g 2824 1  |-  ( ( A  e.  V  /\  B  e.  W )  ->  ( A  u.  B
)  e.  _V )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105    = wceq 1364    e. wcel 2164   _Vcvv 2760    u. cun 3151
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-13 2166  ax-14 2167  ax-ext 2175  ax-pr 4238  ax-un 4464  ax-bd0 15305  ax-bdor 15308  ax-bdex 15311  ax-bdeq 15312  ax-bdel 15313  ax-bdsb 15314  ax-bdsep 15376
This theorem depends on definitions:  df-bi 117  df-tru 1367  df-nf 1472  df-sb 1774  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-rex 2478  df-v 2762  df-un 3157  df-sn 3624  df-pr 3625  df-uni 3836  df-bdc 15333
This theorem is referenced by:  bj-sucexg  15414
  Copyright terms: Public domain W3C validator