ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  cnvin Unicode version

Theorem cnvin 5091
Description: Distributive law for converse over intersection. Theorem 15 of [Suppes] p. 62. (Contributed by NM, 25-Mar-1998.) (Revised by Mario Carneiro, 26-Jun-2014.)
Assertion
Ref Expression
cnvin  |-  `' ( A  i^i  B )  =  ( `' A  i^i  `' B )

Proof of Theorem cnvin
Dummy variables  x  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-cnv 4684 . . 3  |-  `' ( A  i^i  B )  =  { <. x ,  y >.  |  y ( A  i^i  B
) x }
2 inopab 4811 . . . 4  |-  ( {
<. x ,  y >.  |  y A x }  i^i  { <. x ,  y >.  |  y B x } )  =  { <. x ,  y >.  |  ( y A x  /\  y B x ) }
3 brin 4097 . . . . 5  |-  ( y ( A  i^i  B
) x  <->  ( y A x  /\  y B x ) )
43opabbii 4112 . . . 4  |-  { <. x ,  y >.  |  y ( A  i^i  B
) x }  =  { <. x ,  y
>.  |  ( y A x  /\  y B x ) }
52, 4eqtr4i 2229 . . 3  |-  ( {
<. x ,  y >.  |  y A x }  i^i  { <. x ,  y >.  |  y B x } )  =  { <. x ,  y >.  |  y ( A  i^i  B
) x }
61, 5eqtr4i 2229 . 2  |-  `' ( A  i^i  B )  =  ( { <. x ,  y >.  |  y A x }  i^i  {
<. x ,  y >.  |  y B x } )
7 df-cnv 4684 . . 3  |-  `' A  =  { <. x ,  y
>.  |  y A x }
8 df-cnv 4684 . . 3  |-  `' B  =  { <. x ,  y
>.  |  y B x }
97, 8ineq12i 3372 . 2  |-  ( `' A  i^i  `' B
)  =  ( {
<. x ,  y >.  |  y A x }  i^i  { <. x ,  y >.  |  y B x } )
106, 9eqtr4i 2229 1  |-  `' ( A  i^i  B )  =  ( `' A  i^i  `' B )
Colors of variables: wff set class
Syntax hints:    /\ wa 104    = wceq 1373    i^i cin 3165   class class class wbr 4045   {copab 4105   `'ccnv 4675
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 711  ax-5 1470  ax-7 1471  ax-gen 1472  ax-ie1 1516  ax-ie2 1517  ax-8 1527  ax-10 1528  ax-11 1529  ax-i12 1530  ax-bndl 1532  ax-4 1533  ax-17 1549  ax-i9 1553  ax-ial 1557  ax-i5r 1558  ax-14 2179  ax-ext 2187  ax-sep 4163  ax-pow 4219  ax-pr 4254
This theorem depends on definitions:  df-bi 117  df-3an 983  df-tru 1376  df-nf 1484  df-sb 1786  df-clab 2192  df-cleq 2198  df-clel 2201  df-nfc 2337  df-ral 2489  df-rex 2490  df-v 2774  df-un 3170  df-in 3172  df-ss 3179  df-pw 3618  df-sn 3639  df-pr 3640  df-op 3642  df-br 4046  df-opab 4107  df-xp 4682  df-rel 4683  df-cnv 4684
This theorem is referenced by:  rnin  5093  dminxp  5128  imainrect  5129  cnvcnv  5136
  Copyright terms: Public domain W3C validator