ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  brinxp2 Unicode version

Theorem brinxp2 4727
Description: Intersection of binary relation with Cartesian product. (Contributed by NM, 3-Mar-2007.) (Revised by Mario Carneiro, 26-Apr-2015.)
Assertion
Ref Expression
brinxp2  |-  ( A ( R  i^i  ( C  X.  D ) ) B  <->  ( A  e.  C  /\  B  e.  D  /\  A R B ) )

Proof of Theorem brinxp2
StepHypRef Expression
1 brin 4082 . 2  |-  ( A ( R  i^i  ( C  X.  D ) ) B  <->  ( A R B  /\  A ( C  X.  D ) B ) )
2 ancom 266 . 2  |-  ( ( A R B  /\  A ( C  X.  D ) B )  <-> 
( A ( C  X.  D ) B  /\  A R B ) )
3 brxp 4691 . . . 4  |-  ( A ( C  X.  D
) B  <->  ( A  e.  C  /\  B  e.  D ) )
43anbi1i 458 . . 3  |-  ( ( A ( C  X.  D ) B  /\  A R B )  <->  ( ( A  e.  C  /\  B  e.  D )  /\  A R B ) )
5 df-3an 982 . . 3  |-  ( ( A  e.  C  /\  B  e.  D  /\  A R B )  <->  ( ( A  e.  C  /\  B  e.  D )  /\  A R B ) )
64, 5bitr4i 187 . 2  |-  ( ( A ( C  X.  D ) B  /\  A R B )  <->  ( A  e.  C  /\  B  e.  D  /\  A R B ) )
71, 2, 63bitri 206 1  |-  ( A ( R  i^i  ( C  X.  D ) ) B  <->  ( A  e.  C  /\  B  e.  D  /\  A R B ) )
Colors of variables: wff set class
Syntax hints:    /\ wa 104    <-> wb 105    /\ w3a 980    e. wcel 2164    i^i cin 3153   class class class wbr 4030    X. cxp 4658
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-14 2167  ax-ext 2175  ax-sep 4148  ax-pow 4204  ax-pr 4239
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-nf 1472  df-sb 1774  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-ral 2477  df-rex 2478  df-v 2762  df-un 3158  df-in 3160  df-ss 3167  df-pw 3604  df-sn 3625  df-pr 3626  df-op 3628  df-br 4031  df-opab 4092  df-xp 4666
This theorem is referenced by:  brinxp  4728  fncnv  5321  erinxp  6665  isstructim  12635  isstructr  12636
  Copyright terms: Public domain W3C validator