ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  brinxp2 Unicode version

Theorem brinxp2 4463
Description: Intersection of binary relation with cross product. (Contributed by NM, 3-Mar-2007.) (Revised by Mario Carneiro, 26-Apr-2015.)
Assertion
Ref Expression
brinxp2  |-  ( A ( R  i^i  ( C  X.  D ) ) B  <->  ( A  e.  C  /\  B  e.  D  /\  A R B ) )

Proof of Theorem brinxp2
StepHypRef Expression
1 brin 3858 . 2  |-  ( A ( R  i^i  ( C  X.  D ) ) B  <->  ( A R B  /\  A ( C  X.  D ) B ) )
2 ancom 262 . 2  |-  ( ( A R B  /\  A ( C  X.  D ) B )  <-> 
( A ( C  X.  D ) B  /\  A R B ) )
3 brxp 4431 . . . 4  |-  ( A ( C  X.  D
) B  <->  ( A  e.  C  /\  B  e.  D ) )
43anbi1i 446 . . 3  |-  ( ( A ( C  X.  D ) B  /\  A R B )  <->  ( ( A  e.  C  /\  B  e.  D )  /\  A R B ) )
5 df-3an 922 . . 3  |-  ( ( A  e.  C  /\  B  e.  D  /\  A R B )  <->  ( ( A  e.  C  /\  B  e.  D )  /\  A R B ) )
64, 5bitr4i 185 . 2  |-  ( ( A ( C  X.  D ) B  /\  A R B )  <->  ( A  e.  C  /\  B  e.  D  /\  A R B ) )
71, 2, 63bitri 204 1  |-  ( A ( R  i^i  ( C  X.  D ) ) B  <->  ( A  e.  C  /\  B  e.  D  /\  A R B ) )
Colors of variables: wff set class
Syntax hints:    /\ wa 102    <-> wb 103    /\ w3a 920    e. wcel 1434    i^i cin 2983   class class class wbr 3811    X. cxp 4399
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-io 663  ax-5 1377  ax-7 1378  ax-gen 1379  ax-ie1 1423  ax-ie2 1424  ax-8 1436  ax-10 1437  ax-11 1438  ax-i12 1439  ax-bndl 1440  ax-4 1441  ax-14 1446  ax-17 1460  ax-i9 1464  ax-ial 1468  ax-i5r 1469  ax-ext 2065  ax-sep 3922  ax-pow 3974  ax-pr 4000
This theorem depends on definitions:  df-bi 115  df-3an 922  df-tru 1288  df-nf 1391  df-sb 1688  df-clab 2070  df-cleq 2076  df-clel 2079  df-nfc 2212  df-ral 2358  df-rex 2359  df-v 2614  df-un 2988  df-in 2990  df-ss 2997  df-pw 3408  df-sn 3428  df-pr 3429  df-op 3431  df-br 3812  df-opab 3866  df-xp 4407
This theorem is referenced by:  brinxp  4464  fncnv  5033  erinxp  6296
  Copyright terms: Public domain W3C validator