ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  brinxp2 Unicode version

Theorem brinxp2 4655
Description: Intersection of binary relation with Cartesian product. (Contributed by NM, 3-Mar-2007.) (Revised by Mario Carneiro, 26-Apr-2015.)
Assertion
Ref Expression
brinxp2  |-  ( A ( R  i^i  ( C  X.  D ) ) B  <->  ( A  e.  C  /\  B  e.  D  /\  A R B ) )

Proof of Theorem brinxp2
StepHypRef Expression
1 brin 4018 . 2  |-  ( A ( R  i^i  ( C  X.  D ) ) B  <->  ( A R B  /\  A ( C  X.  D ) B ) )
2 ancom 264 . 2  |-  ( ( A R B  /\  A ( C  X.  D ) B )  <-> 
( A ( C  X.  D ) B  /\  A R B ) )
3 brxp 4619 . . . 4  |-  ( A ( C  X.  D
) B  <->  ( A  e.  C  /\  B  e.  D ) )
43anbi1i 454 . . 3  |-  ( ( A ( C  X.  D ) B  /\  A R B )  <->  ( ( A  e.  C  /\  B  e.  D )  /\  A R B ) )
5 df-3an 965 . . 3  |-  ( ( A  e.  C  /\  B  e.  D  /\  A R B )  <->  ( ( A  e.  C  /\  B  e.  D )  /\  A R B ) )
64, 5bitr4i 186 . 2  |-  ( ( A ( C  X.  D ) B  /\  A R B )  <->  ( A  e.  C  /\  B  e.  D  /\  A R B ) )
71, 2, 63bitri 205 1  |-  ( A ( R  i^i  ( C  X.  D ) ) B  <->  ( A  e.  C  /\  B  e.  D  /\  A R B ) )
Colors of variables: wff set class
Syntax hints:    /\ wa 103    <-> wb 104    /\ w3a 963    e. wcel 2128    i^i cin 3101   class class class wbr 3967    X. cxp 4586
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 699  ax-5 1427  ax-7 1428  ax-gen 1429  ax-ie1 1473  ax-ie2 1474  ax-8 1484  ax-10 1485  ax-11 1486  ax-i12 1487  ax-bndl 1489  ax-4 1490  ax-17 1506  ax-i9 1510  ax-ial 1514  ax-i5r 1515  ax-14 2131  ax-ext 2139  ax-sep 4084  ax-pow 4137  ax-pr 4171
This theorem depends on definitions:  df-bi 116  df-3an 965  df-tru 1338  df-nf 1441  df-sb 1743  df-clab 2144  df-cleq 2150  df-clel 2153  df-nfc 2288  df-ral 2440  df-rex 2441  df-v 2714  df-un 3106  df-in 3108  df-ss 3115  df-pw 3546  df-sn 3567  df-pr 3568  df-op 3570  df-br 3968  df-opab 4028  df-xp 4594
This theorem is referenced by:  brinxp  4656  fncnv  5238  erinxp  6556  isstructim  12274  isstructr  12275
  Copyright terms: Public domain W3C validator