ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  brinxp2 Unicode version

Theorem brinxp2 4671
Description: Intersection of binary relation with Cartesian product. (Contributed by NM, 3-Mar-2007.) (Revised by Mario Carneiro, 26-Apr-2015.)
Assertion
Ref Expression
brinxp2  |-  ( A ( R  i^i  ( C  X.  D ) ) B  <->  ( A  e.  C  /\  B  e.  D  /\  A R B ) )

Proof of Theorem brinxp2
StepHypRef Expression
1 brin 4034 . 2  |-  ( A ( R  i^i  ( C  X.  D ) ) B  <->  ( A R B  /\  A ( C  X.  D ) B ) )
2 ancom 264 . 2  |-  ( ( A R B  /\  A ( C  X.  D ) B )  <-> 
( A ( C  X.  D ) B  /\  A R B ) )
3 brxp 4635 . . . 4  |-  ( A ( C  X.  D
) B  <->  ( A  e.  C  /\  B  e.  D ) )
43anbi1i 454 . . 3  |-  ( ( A ( C  X.  D ) B  /\  A R B )  <->  ( ( A  e.  C  /\  B  e.  D )  /\  A R B ) )
5 df-3an 970 . . 3  |-  ( ( A  e.  C  /\  B  e.  D  /\  A R B )  <->  ( ( A  e.  C  /\  B  e.  D )  /\  A R B ) )
64, 5bitr4i 186 . 2  |-  ( ( A ( C  X.  D ) B  /\  A R B )  <->  ( A  e.  C  /\  B  e.  D  /\  A R B ) )
71, 2, 63bitri 205 1  |-  ( A ( R  i^i  ( C  X.  D ) ) B  <->  ( A  e.  C  /\  B  e.  D  /\  A R B ) )
Colors of variables: wff set class
Syntax hints:    /\ wa 103    <-> wb 104    /\ w3a 968    e. wcel 2136    i^i cin 3115   class class class wbr 3982    X. cxp 4602
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 699  ax-5 1435  ax-7 1436  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-10 1493  ax-11 1494  ax-i12 1495  ax-bndl 1497  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522  ax-i5r 1523  ax-14 2139  ax-ext 2147  ax-sep 4100  ax-pow 4153  ax-pr 4187
This theorem depends on definitions:  df-bi 116  df-3an 970  df-tru 1346  df-nf 1449  df-sb 1751  df-clab 2152  df-cleq 2158  df-clel 2161  df-nfc 2297  df-ral 2449  df-rex 2450  df-v 2728  df-un 3120  df-in 3122  df-ss 3129  df-pw 3561  df-sn 3582  df-pr 3583  df-op 3585  df-br 3983  df-opab 4044  df-xp 4610
This theorem is referenced by:  brinxp  4672  fncnv  5254  erinxp  6575  isstructim  12408  isstructr  12409
  Copyright terms: Public domain W3C validator