ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  trin2 Unicode version

Theorem trin2 5002
Description: The intersection of two transitive classes is transitive. (Contributed by FL, 31-Jul-2009.)
Assertion
Ref Expression
trin2  |-  ( ( ( R  o.  R
)  C_  R  /\  ( S  o.  S
)  C_  S )  ->  ( ( R  i^i  S )  o.  ( R  i^i  S ) ) 
C_  ( R  i^i  S ) )

Proof of Theorem trin2
Dummy variables  x  y  z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 cotr 4992 . . . 4  |-  ( ( R  o.  R ) 
C_  R  <->  A. x A. y A. z ( ( x R y  /\  y R z )  ->  x R
z ) )
2 cotr 4992 . . . . . 6  |-  ( ( S  o.  S ) 
C_  S  <->  A. x A. y A. z ( ( x S y  /\  y S z )  ->  x S
z ) )
3 brin 4041 . . . . . . . . . . . . 13  |-  ( x ( R  i^i  S
) y  <->  ( x R y  /\  x S y ) )
4 brin 4041 . . . . . . . . . . . . 13  |-  ( y ( R  i^i  S
) z  <->  ( y R z  /\  y S z ) )
5 simpr 109 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( x S y  /\  y S z )  ->  x S z )  /\  ( ( x R y  /\  y R z )  ->  x R z ) )  ->  ( ( x R y  /\  y R z )  ->  x R z ) )
6 simpl 108 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( x S y  /\  y S z )  ->  x S z )  /\  ( ( x R y  /\  y R z )  ->  x R z ) )  ->  ( ( x S y  /\  y S z )  ->  x S z ) )
75, 6anim12d 333 . . . . . . . . . . . . . . 15  |-  ( ( ( ( x S y  /\  y S z )  ->  x S z )  /\  ( ( x R y  /\  y R z )  ->  x R z ) )  ->  ( ( ( x R y  /\  y R z )  /\  ( x S y  /\  y S z ) )  ->  (
x R z  /\  x S z ) ) )
87com12 30 . . . . . . . . . . . . . 14  |-  ( ( ( x R y  /\  y R z )  /\  ( x S y  /\  y S z ) )  ->  ( ( ( ( x S y  /\  y S z )  ->  x S
z )  /\  (
( x R y  /\  y R z )  ->  x R
z ) )  -> 
( x R z  /\  x S z ) ) )
98an4s 583 . . . . . . . . . . . . 13  |-  ( ( ( x R y  /\  x S y )  /\  ( y R z  /\  y S z ) )  ->  ( ( ( ( x S y  /\  y S z )  ->  x S
z )  /\  (
( x R y  /\  y R z )  ->  x R
z ) )  -> 
( x R z  /\  x S z ) ) )
103, 4, 9syl2anb 289 . . . . . . . . . . . 12  |-  ( ( x ( R  i^i  S ) y  /\  y
( R  i^i  S
) z )  -> 
( ( ( ( x S y  /\  y S z )  ->  x S z )  /\  ( ( x R y  /\  y R z )  ->  x R z ) )  ->  ( x R z  /\  x S z ) ) )
1110com12 30 . . . . . . . . . . 11  |-  ( ( ( ( x S y  /\  y S z )  ->  x S z )  /\  ( ( x R y  /\  y R z )  ->  x R z ) )  ->  ( ( x ( R  i^i  S
) y  /\  y
( R  i^i  S
) z )  -> 
( x R z  /\  x S z ) ) )
12 brin 4041 . . . . . . . . . . 11  |-  ( x ( R  i^i  S
) z  <->  ( x R z  /\  x S z ) )
1311, 12syl6ibr 161 . . . . . . . . . 10  |-  ( ( ( ( x S y  /\  y S z )  ->  x S z )  /\  ( ( x R y  /\  y R z )  ->  x R z ) )  ->  ( ( x ( R  i^i  S
) y  /\  y
( R  i^i  S
) z )  ->  x ( R  i^i  S ) z ) )
1413alanimi 1452 . . . . . . . . 9  |-  ( ( A. z ( ( x S y  /\  y S z )  ->  x S z )  /\  A. z ( ( x R y  /\  y R z )  ->  x R z ) )  ->  A. z ( ( x ( R  i^i  S ) y  /\  y
( R  i^i  S
) z )  ->  x ( R  i^i  S ) z ) )
1514alanimi 1452 . . . . . . . 8  |-  ( ( A. y A. z
( ( x S y  /\  y S z )  ->  x S z )  /\  A. y A. z ( ( x R y  /\  y R z )  ->  x R
z ) )  ->  A. y A. z ( ( x ( R  i^i  S ) y  /\  y ( R  i^i  S ) z )  ->  x ( R  i^i  S ) z ) )
1615alanimi 1452 . . . . . . 7  |-  ( ( A. x A. y A. z ( ( x S y  /\  y S z )  ->  x S z )  /\  A. x A. y A. z ( ( x R y  /\  y R z )  ->  x R z ) )  ->  A. x A. y A. z ( ( x ( R  i^i  S
) y  /\  y
( R  i^i  S
) z )  ->  x ( R  i^i  S ) z ) )
1716ex 114 . . . . . 6  |-  ( A. x A. y A. z
( ( x S y  /\  y S z )  ->  x S z )  -> 
( A. x A. y A. z ( ( x R y  /\  y R z )  ->  x R z )  ->  A. x A. y A. z ( ( x ( R  i^i  S
) y  /\  y
( R  i^i  S
) z )  ->  x ( R  i^i  S ) z ) ) )
182, 17sylbi 120 . . . . 5  |-  ( ( S  o.  S ) 
C_  S  ->  ( A. x A. y A. z ( ( x R y  /\  y R z )  ->  x R z )  ->  A. x A. y A. z ( ( x ( R  i^i  S
) y  /\  y
( R  i^i  S
) z )  ->  x ( R  i^i  S ) z ) ) )
1918com12 30 . . . 4  |-  ( A. x A. y A. z
( ( x R y  /\  y R z )  ->  x R z )  -> 
( ( S  o.  S )  C_  S  ->  A. x A. y A. z ( ( x ( R  i^i  S
) y  /\  y
( R  i^i  S
) z )  ->  x ( R  i^i  S ) z ) ) )
201, 19sylbi 120 . . 3  |-  ( ( R  o.  R ) 
C_  R  ->  (
( S  o.  S
)  C_  S  ->  A. x A. y A. z ( ( x ( R  i^i  S
) y  /\  y
( R  i^i  S
) z )  ->  x ( R  i^i  S ) z ) ) )
2120imp 123 . 2  |-  ( ( ( R  o.  R
)  C_  R  /\  ( S  o.  S
)  C_  S )  ->  A. x A. y A. z ( ( x ( R  i^i  S
) y  /\  y
( R  i^i  S
) z )  ->  x ( R  i^i  S ) z ) )
22 cotr 4992 . 2  |-  ( ( ( R  i^i  S
)  o.  ( R  i^i  S ) ) 
C_  ( R  i^i  S )  <->  A. x A. y A. z ( ( x ( R  i^i  S
) y  /\  y
( R  i^i  S
) z )  ->  x ( R  i^i  S ) z ) )
2321, 22sylibr 133 1  |-  ( ( ( R  o.  R
)  C_  R  /\  ( S  o.  S
)  C_  S )  ->  ( ( R  i^i  S )  o.  ( R  i^i  S ) ) 
C_  ( R  i^i  S ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103   A.wal 1346    i^i cin 3120    C_ wss 3121   class class class wbr 3989    o. ccom 4615
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 704  ax-5 1440  ax-7 1441  ax-gen 1442  ax-ie1 1486  ax-ie2 1487  ax-8 1497  ax-10 1498  ax-11 1499  ax-i12 1500  ax-bndl 1502  ax-4 1503  ax-17 1519  ax-i9 1523  ax-ial 1527  ax-i5r 1528  ax-14 2144  ax-ext 2152  ax-sep 4107  ax-pow 4160  ax-pr 4194
This theorem depends on definitions:  df-bi 116  df-3an 975  df-tru 1351  df-nf 1454  df-sb 1756  df-eu 2022  df-mo 2023  df-clab 2157  df-cleq 2163  df-clel 2166  df-nfc 2301  df-ral 2453  df-rex 2454  df-v 2732  df-un 3125  df-in 3127  df-ss 3134  df-pw 3568  df-sn 3589  df-pr 3590  df-op 3592  df-br 3990  df-opab 4051  df-xp 4617  df-rel 4618  df-co 4620
This theorem is referenced by:  trinxp  5004
  Copyright terms: Public domain W3C validator