Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > erinxp | Unicode version |
Description: A restricted equivalence relation is an equivalence relation. (Contributed by Mario Carneiro, 10-Jul-2015.) (Revised by Mario Carneiro, 12-Aug-2015.) |
Ref | Expression |
---|---|
erinxp.r | |
erinxp.a |
Ref | Expression |
---|---|
erinxp |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | inss2 3348 | . . . 4 | |
2 | relxp 4720 | . . . 4 | |
3 | relss 4698 | . . . 4 | |
4 | 1, 2, 3 | mp2 16 | . . 3 |
5 | 4 | a1i 9 | . 2 |
6 | simpr 109 | . . . . 5 | |
7 | brinxp2 4678 | . . . . 5 | |
8 | 6, 7 | sylib 121 | . . . 4 |
9 | 8 | simp2d 1005 | . . 3 |
10 | 8 | simp1d 1004 | . . 3 |
11 | erinxp.r | . . . . 5 | |
12 | 11 | adantr 274 | . . . 4 |
13 | 8 | simp3d 1006 | . . . 4 |
14 | 12, 13 | ersym 6525 | . . 3 |
15 | brinxp2 4678 | . . 3 | |
16 | 9, 10, 14, 15 | syl3anbrc 1176 | . 2 |
17 | 10 | adantrr 476 | . . 3 |
18 | simprr 527 | . . . . 5 | |
19 | brinxp2 4678 | . . . . 5 | |
20 | 18, 19 | sylib 121 | . . . 4 |
21 | 20 | simp2d 1005 | . . 3 |
22 | 11 | adantr 274 | . . . 4 |
23 | 13 | adantrr 476 | . . . 4 |
24 | 20 | simp3d 1006 | . . . 4 |
25 | 22, 23, 24 | ertrd 6529 | . . 3 |
26 | brinxp2 4678 | . . 3 | |
27 | 17, 21, 25, 26 | syl3anbrc 1176 | . 2 |
28 | 11 | adantr 274 | . . . . . 6 |
29 | erinxp.a | . . . . . . 7 | |
30 | 29 | sselda 3147 | . . . . . 6 |
31 | 28, 30 | erref 6533 | . . . . 5 |
32 | 31 | ex 114 | . . . 4 |
33 | 32 | pm4.71rd 392 | . . 3 |
34 | brin 4041 | . . . 4 | |
35 | brxp 4642 | . . . . . 6 | |
36 | anidm 394 | . . . . . 6 | |
37 | 35, 36 | bitri 183 | . . . . 5 |
38 | 37 | anbi2i 454 | . . . 4 |
39 | 34, 38 | bitri 183 | . . 3 |
40 | 33, 39 | bitr4di 197 | . 2 |
41 | 5, 16, 27, 40 | iserd 6539 | 1 |
Colors of variables: wff set class |
Syntax hints: wi 4 wa 103 w3a 973 wcel 2141 cin 3120 wss 3121 class class class wbr 3989 cxp 4609 wrel 4616 wer 6510 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 704 ax-5 1440 ax-7 1441 ax-gen 1442 ax-ie1 1486 ax-ie2 1487 ax-8 1497 ax-10 1498 ax-11 1499 ax-i12 1500 ax-bndl 1502 ax-4 1503 ax-17 1519 ax-i9 1523 ax-ial 1527 ax-i5r 1528 ax-14 2144 ax-ext 2152 ax-sep 4107 ax-pow 4160 ax-pr 4194 |
This theorem depends on definitions: df-bi 116 df-3an 975 df-tru 1351 df-nf 1454 df-sb 1756 df-eu 2022 df-mo 2023 df-clab 2157 df-cleq 2163 df-clel 2166 df-nfc 2301 df-ral 2453 df-rex 2454 df-v 2732 df-un 3125 df-in 3127 df-ss 3134 df-pw 3568 df-sn 3589 df-pr 3590 df-op 3592 df-br 3990 df-opab 4051 df-xp 4617 df-rel 4618 df-cnv 4619 df-co 4620 df-dm 4621 df-er 6513 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |