| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > erinxp | Unicode version | ||
| Description: A restricted equivalence relation is an equivalence relation. (Contributed by Mario Carneiro, 10-Jul-2015.) (Revised by Mario Carneiro, 12-Aug-2015.) |
| Ref | Expression |
|---|---|
| erinxp.r |
|
| erinxp.a |
|
| Ref | Expression |
|---|---|
| erinxp |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | inss2 3425 |
. . . 4
| |
| 2 | relxp 4827 |
. . . 4
| |
| 3 | relss 4805 |
. . . 4
| |
| 4 | 1, 2, 3 | mp2 16 |
. . 3
|
| 5 | 4 | a1i 9 |
. 2
|
| 6 | simpr 110 |
. . . . 5
| |
| 7 | brinxp2 4785 |
. . . . 5
| |
| 8 | 6, 7 | sylib 122 |
. . . 4
|
| 9 | 8 | simp2d 1034 |
. . 3
|
| 10 | 8 | simp1d 1033 |
. . 3
|
| 11 | erinxp.r |
. . . . 5
| |
| 12 | 11 | adantr 276 |
. . . 4
|
| 13 | 8 | simp3d 1035 |
. . . 4
|
| 14 | 12, 13 | ersym 6690 |
. . 3
|
| 15 | brinxp2 4785 |
. . 3
| |
| 16 | 9, 10, 14, 15 | syl3anbrc 1205 |
. 2
|
| 17 | 10 | adantrr 479 |
. . 3
|
| 18 | simprr 531 |
. . . . 5
| |
| 19 | brinxp2 4785 |
. . . . 5
| |
| 20 | 18, 19 | sylib 122 |
. . . 4
|
| 21 | 20 | simp2d 1034 |
. . 3
|
| 22 | 11 | adantr 276 |
. . . 4
|
| 23 | 13 | adantrr 479 |
. . . 4
|
| 24 | 20 | simp3d 1035 |
. . . 4
|
| 25 | 22, 23, 24 | ertrd 6694 |
. . 3
|
| 26 | brinxp2 4785 |
. . 3
| |
| 27 | 17, 21, 25, 26 | syl3anbrc 1205 |
. 2
|
| 28 | 11 | adantr 276 |
. . . . . 6
|
| 29 | erinxp.a |
. . . . . . 7
| |
| 30 | 29 | sselda 3224 |
. . . . . 6
|
| 31 | 28, 30 | erref 6698 |
. . . . 5
|
| 32 | 31 | ex 115 |
. . . 4
|
| 33 | 32 | pm4.71rd 394 |
. . 3
|
| 34 | brin 4135 |
. . . 4
| |
| 35 | brxp 4749 |
. . . . . 6
| |
| 36 | anidm 396 |
. . . . . 6
| |
| 37 | 35, 36 | bitri 184 |
. . . . 5
|
| 38 | 37 | anbi2i 457 |
. . . 4
|
| 39 | 34, 38 | bitri 184 |
. . 3
|
| 40 | 33, 39 | bitr4di 198 |
. 2
|
| 41 | 5, 16, 27, 40 | iserd 6704 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-14 2203 ax-ext 2211 ax-sep 4201 ax-pow 4257 ax-pr 4292 |
| This theorem depends on definitions: df-bi 117 df-3an 1004 df-tru 1398 df-nf 1507 df-sb 1809 df-eu 2080 df-mo 2081 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-ral 2513 df-rex 2514 df-v 2801 df-un 3201 df-in 3203 df-ss 3210 df-pw 3651 df-sn 3672 df-pr 3673 df-op 3675 df-br 4083 df-opab 4145 df-xp 4724 df-rel 4725 df-cnv 4726 df-co 4727 df-dm 4728 df-er 6678 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |