ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  erinxp Unicode version

Theorem erinxp 6318
Description: A restricted equivalence relation is an equivalence relation. (Contributed by Mario Carneiro, 10-Jul-2015.) (Revised by Mario Carneiro, 12-Aug-2015.)
Hypotheses
Ref Expression
erinxp.r  |-  ( ph  ->  R  Er  A )
erinxp.a  |-  ( ph  ->  B  C_  A )
Assertion
Ref Expression
erinxp  |-  ( ph  ->  ( R  i^i  ( B  X.  B ) )  Er  B )

Proof of Theorem erinxp
Dummy variables  x  y  z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 inss2 3210 . . . 4  |-  ( R  i^i  ( B  X.  B ) )  C_  ( B  X.  B
)
2 relxp 4515 . . . 4  |-  Rel  ( B  X.  B )
3 relss 4493 . . . 4  |-  ( ( R  i^i  ( B  X.  B ) ) 
C_  ( B  X.  B )  ->  ( Rel  ( B  X.  B
)  ->  Rel  ( R  i^i  ( B  X.  B ) ) ) )
41, 2, 3mp2 16 . . 3  |-  Rel  ( R  i^i  ( B  X.  B ) )
54a1i 9 . 2  |-  ( ph  ->  Rel  ( R  i^i  ( B  X.  B
) ) )
6 simpr 108 . . . . 5  |-  ( (
ph  /\  x ( R  i^i  ( B  X.  B ) ) y )  ->  x ( R  i^i  ( B  X.  B ) ) y )
7 brinxp2 4473 . . . . 5  |-  ( x ( R  i^i  ( B  X.  B ) ) y  <->  ( x  e.  B  /\  y  e.  B  /\  x R y ) )
86, 7sylib 120 . . . 4  |-  ( (
ph  /\  x ( R  i^i  ( B  X.  B ) ) y )  ->  ( x  e.  B  /\  y  e.  B  /\  x R y ) )
98simp2d 954 . . 3  |-  ( (
ph  /\  x ( R  i^i  ( B  X.  B ) ) y )  ->  y  e.  B )
108simp1d 953 . . 3  |-  ( (
ph  /\  x ( R  i^i  ( B  X.  B ) ) y )  ->  x  e.  B )
11 erinxp.r . . . . 5  |-  ( ph  ->  R  Er  A )
1211adantr 270 . . . 4  |-  ( (
ph  /\  x ( R  i^i  ( B  X.  B ) ) y )  ->  R  Er  A )
138simp3d 955 . . . 4  |-  ( (
ph  /\  x ( R  i^i  ( B  X.  B ) ) y )  ->  x R
y )
1412, 13ersym 6256 . . 3  |-  ( (
ph  /\  x ( R  i^i  ( B  X.  B ) ) y )  ->  y R x )
15 brinxp2 4473 . . 3  |-  ( y ( R  i^i  ( B  X.  B ) ) x  <->  ( y  e.  B  /\  x  e.  B  /\  y R x ) )
169, 10, 14, 15syl3anbrc 1125 . 2  |-  ( (
ph  /\  x ( R  i^i  ( B  X.  B ) ) y )  ->  y ( R  i^i  ( B  X.  B ) ) x )
1710adantrr 463 . . 3  |-  ( (
ph  /\  ( x
( R  i^i  ( B  X.  B ) ) y  /\  y ( R  i^i  ( B  X.  B ) ) z ) )  ->  x  e.  B )
18 simprr 499 . . . . 5  |-  ( (
ph  /\  ( x
( R  i^i  ( B  X.  B ) ) y  /\  y ( R  i^i  ( B  X.  B ) ) z ) )  -> 
y ( R  i^i  ( B  X.  B
) ) z )
19 brinxp2 4473 . . . . 5  |-  ( y ( R  i^i  ( B  X.  B ) ) z  <->  ( y  e.  B  /\  z  e.  B  /\  y R z ) )
2018, 19sylib 120 . . . 4  |-  ( (
ph  /\  ( x
( R  i^i  ( B  X.  B ) ) y  /\  y ( R  i^i  ( B  X.  B ) ) z ) )  -> 
( y  e.  B  /\  z  e.  B  /\  y R z ) )
2120simp2d 954 . . 3  |-  ( (
ph  /\  ( x
( R  i^i  ( B  X.  B ) ) y  /\  y ( R  i^i  ( B  X.  B ) ) z ) )  -> 
z  e.  B )
2211adantr 270 . . . 4  |-  ( (
ph  /\  ( x
( R  i^i  ( B  X.  B ) ) y  /\  y ( R  i^i  ( B  X.  B ) ) z ) )  ->  R  Er  A )
2313adantrr 463 . . . 4  |-  ( (
ph  /\  ( x
( R  i^i  ( B  X.  B ) ) y  /\  y ( R  i^i  ( B  X.  B ) ) z ) )  ->  x R y )
2420simp3d 955 . . . 4  |-  ( (
ph  /\  ( x
( R  i^i  ( B  X.  B ) ) y  /\  y ( R  i^i  ( B  X.  B ) ) z ) )  -> 
y R z )
2522, 23, 24ertrd 6260 . . 3  |-  ( (
ph  /\  ( x
( R  i^i  ( B  X.  B ) ) y  /\  y ( R  i^i  ( B  X.  B ) ) z ) )  ->  x R z )
26 brinxp2 4473 . . 3  |-  ( x ( R  i^i  ( B  X.  B ) ) z  <->  ( x  e.  B  /\  z  e.  B  /\  x R z ) )
2717, 21, 25, 26syl3anbrc 1125 . 2  |-  ( (
ph  /\  ( x
( R  i^i  ( B  X.  B ) ) y  /\  y ( R  i^i  ( B  X.  B ) ) z ) )  ->  x ( R  i^i  ( B  X.  B
) ) z )
2811adantr 270 . . . . . 6  |-  ( (
ph  /\  x  e.  B )  ->  R  Er  A )
29 erinxp.a . . . . . . 7  |-  ( ph  ->  B  C_  A )
3029sselda 3014 . . . . . 6  |-  ( (
ph  /\  x  e.  B )  ->  x  e.  A )
3128, 30erref 6264 . . . . 5  |-  ( (
ph  /\  x  e.  B )  ->  x R x )
3231ex 113 . . . 4  |-  ( ph  ->  ( x  e.  B  ->  x R x ) )
3332pm4.71rd 386 . . 3  |-  ( ph  ->  ( x  e.  B  <->  ( x R x  /\  x  e.  B )
) )
34 brin 3867 . . . 4  |-  ( x ( R  i^i  ( B  X.  B ) ) x  <->  ( x R x  /\  x ( B  X.  B ) x ) )
35 brxp 4441 . . . . . 6  |-  ( x ( B  X.  B
) x  <->  ( x  e.  B  /\  x  e.  B ) )
36 anidm 388 . . . . . 6  |-  ( ( x  e.  B  /\  x  e.  B )  <->  x  e.  B )
3735, 36bitri 182 . . . . 5  |-  ( x ( B  X.  B
) x  <->  x  e.  B )
3837anbi2i 445 . . . 4  |-  ( ( x R x  /\  x ( B  X.  B ) x )  <-> 
( x R x  /\  x  e.  B
) )
3934, 38bitri 182 . . 3  |-  ( x ( R  i^i  ( B  X.  B ) ) x  <->  ( x R x  /\  x  e.  B ) )
4033, 39syl6bbr 196 . 2  |-  ( ph  ->  ( x  e.  B  <->  x ( R  i^i  ( B  X.  B ) ) x ) )
415, 16, 27, 40iserd 6270 1  |-  ( ph  ->  ( R  i^i  ( B  X.  B ) )  Er  B )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 102    /\ w3a 922    e. wcel 1436    i^i cin 2987    C_ wss 2988   class class class wbr 3820    X. cxp 4409   Rel wrel 4416    Er wer 6241
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-io 663  ax-5 1379  ax-7 1380  ax-gen 1381  ax-ie1 1425  ax-ie2 1426  ax-8 1438  ax-10 1439  ax-11 1440  ax-i12 1441  ax-bndl 1442  ax-4 1443  ax-14 1448  ax-17 1462  ax-i9 1466  ax-ial 1470  ax-i5r 1471  ax-ext 2067  ax-sep 3932  ax-pow 3984  ax-pr 4010
This theorem depends on definitions:  df-bi 115  df-3an 924  df-tru 1290  df-nf 1393  df-sb 1690  df-eu 1948  df-mo 1949  df-clab 2072  df-cleq 2078  df-clel 2081  df-nfc 2214  df-ral 2360  df-rex 2361  df-v 2617  df-un 2992  df-in 2994  df-ss 3001  df-pw 3417  df-sn 3437  df-pr 3438  df-op 3440  df-br 3821  df-opab 3875  df-xp 4417  df-rel 4418  df-cnv 4419  df-co 4420  df-dm 4421  df-er 6244
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator