ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  brresg GIF version

Theorem brresg 4892
Description: Binary relation on a restriction. (Contributed by Mario Carneiro, 4-Nov-2015.)
Assertion
Ref Expression
brresg (𝐵𝑉 → (𝐴(𝐶𝐷)𝐵 ↔ (𝐴𝐶𝐵𝐴𝐷)))

Proof of Theorem brresg
StepHypRef Expression
1 opelresg 4891 . 2 (𝐵𝑉 → (⟨𝐴, 𝐵⟩ ∈ (𝐶𝐷) ↔ (⟨𝐴, 𝐵⟩ ∈ 𝐶𝐴𝐷)))
2 df-br 3983 . 2 (𝐴(𝐶𝐷)𝐵 ↔ ⟨𝐴, 𝐵⟩ ∈ (𝐶𝐷))
3 df-br 3983 . . 3 (𝐴𝐶𝐵 ↔ ⟨𝐴, 𝐵⟩ ∈ 𝐶)
43anbi1i 454 . 2 ((𝐴𝐶𝐵𝐴𝐷) ↔ (⟨𝐴, 𝐵⟩ ∈ 𝐶𝐴𝐷))
51, 2, 43bitr4g 222 1 (𝐵𝑉 → (𝐴(𝐶𝐷)𝐵 ↔ (𝐴𝐶𝐵𝐴𝐷)))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 103  wb 104  wcel 2136  cop 3579   class class class wbr 3982  cres 4606
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 699  ax-5 1435  ax-7 1436  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-10 1493  ax-11 1494  ax-i12 1495  ax-bndl 1497  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522  ax-i5r 1523  ax-14 2139  ax-ext 2147  ax-sep 4100  ax-pow 4153  ax-pr 4187
This theorem depends on definitions:  df-bi 116  df-3an 970  df-tru 1346  df-nf 1449  df-sb 1751  df-clab 2152  df-cleq 2158  df-clel 2161  df-nfc 2297  df-ral 2449  df-rex 2450  df-v 2728  df-un 3120  df-in 3122  df-ss 3129  df-pw 3561  df-sn 3582  df-pr 3583  df-op 3585  df-br 3983  df-opab 4044  df-xp 4610  df-res 4616
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator