ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  brresg GIF version

Theorem brresg 4682
Description: Binary relation on a restriction. (Contributed by Mario Carneiro, 4-Nov-2015.)
Assertion
Ref Expression
brresg (𝐵𝑉 → (𝐴(𝐶𝐷)𝐵 ↔ (𝐴𝐶𝐵𝐴𝐷)))

Proof of Theorem brresg
StepHypRef Expression
1 opelresg 4681 . 2 (𝐵𝑉 → (⟨𝐴, 𝐵⟩ ∈ (𝐶𝐷) ↔ (⟨𝐴, 𝐵⟩ ∈ 𝐶𝐴𝐷)))
2 df-br 3815 . 2 (𝐴(𝐶𝐷)𝐵 ↔ ⟨𝐴, 𝐵⟩ ∈ (𝐶𝐷))
3 df-br 3815 . . 3 (𝐴𝐶𝐵 ↔ ⟨𝐴, 𝐵⟩ ∈ 𝐶)
43anbi1i 446 . 2 ((𝐴𝐶𝐵𝐴𝐷) ↔ (⟨𝐴, 𝐵⟩ ∈ 𝐶𝐴𝐷))
51, 2, 43bitr4g 221 1 (𝐵𝑉 → (𝐴(𝐶𝐷)𝐵 ↔ (𝐴𝐶𝐵𝐴𝐷)))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 102  wb 103  wcel 1436  cop 3428   class class class wbr 3814  cres 4406
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-io 663  ax-5 1379  ax-7 1380  ax-gen 1381  ax-ie1 1425  ax-ie2 1426  ax-8 1438  ax-10 1439  ax-11 1440  ax-i12 1441  ax-bndl 1442  ax-4 1443  ax-14 1448  ax-17 1462  ax-i9 1466  ax-ial 1470  ax-i5r 1471  ax-ext 2067  ax-sep 3925  ax-pow 3977  ax-pr 4003
This theorem depends on definitions:  df-bi 115  df-3an 924  df-tru 1290  df-nf 1393  df-sb 1690  df-clab 2072  df-cleq 2078  df-clel 2081  df-nfc 2214  df-ral 2360  df-rex 2361  df-v 2616  df-un 2990  df-in 2992  df-ss 2999  df-pw 3411  df-sn 3431  df-pr 3432  df-op 3434  df-br 3815  df-opab 3869  df-xp 4410  df-res 4416
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator