ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  opelresg Unicode version

Theorem opelresg 4898
Description: Ordered pair membership in a restriction. Exercise 13 of [TakeutiZaring] p. 25. (Contributed by NM, 14-Oct-2005.)
Assertion
Ref Expression
opelresg  |-  ( B  e.  V  ->  ( <. A ,  B >.  e.  ( C  |`  D )  <-> 
( <. A ,  B >.  e.  C  /\  A  e.  D ) ) )

Proof of Theorem opelresg
Dummy variable  y is distinct from all other variables.
StepHypRef Expression
1 opeq2 3766 . . 3  |-  ( y  =  B  ->  <. A , 
y >.  =  <. A ,  B >. )
21eleq1d 2239 . 2  |-  ( y  =  B  ->  ( <. A ,  y >.  e.  ( C  |`  D )  <->  <. A ,  B >.  e.  ( C  |`  D ) ) )
31eleq1d 2239 . . 3  |-  ( y  =  B  ->  ( <. A ,  y >.  e.  C  <->  <. A ,  B >.  e.  C ) )
43anbi1d 462 . 2  |-  ( y  =  B  ->  (
( <. A ,  y
>.  e.  C  /\  A  e.  D )  <->  ( <. A ,  B >.  e.  C  /\  A  e.  D
) ) )
5 vex 2733 . . 3  |-  y  e. 
_V
65opelres 4896 . 2  |-  ( <. A ,  y >.  e.  ( C  |`  D )  <-> 
( <. A ,  y
>.  e.  C  /\  A  e.  D ) )
72, 4, 6vtoclbg 2791 1  |-  ( B  e.  V  ->  ( <. A ,  B >.  e.  ( C  |`  D )  <-> 
( <. A ,  B >.  e.  C  /\  A  e.  D ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103    <-> wb 104    = wceq 1348    e. wcel 2141   <.cop 3586    |` cres 4613
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 704  ax-5 1440  ax-7 1441  ax-gen 1442  ax-ie1 1486  ax-ie2 1487  ax-8 1497  ax-10 1498  ax-11 1499  ax-i12 1500  ax-bndl 1502  ax-4 1503  ax-17 1519  ax-i9 1523  ax-ial 1527  ax-i5r 1528  ax-14 2144  ax-ext 2152  ax-sep 4107  ax-pow 4160  ax-pr 4194
This theorem depends on definitions:  df-bi 116  df-3an 975  df-tru 1351  df-nf 1454  df-sb 1756  df-clab 2157  df-cleq 2163  df-clel 2166  df-nfc 2301  df-ral 2453  df-rex 2454  df-v 2732  df-un 3125  df-in 3127  df-ss 3134  df-pw 3568  df-sn 3589  df-pr 3590  df-op 3592  df-opab 4051  df-xp 4617  df-res 4623
This theorem is referenced by:  brresg  4899  opelresi  4902  issref  4993
  Copyright terms: Public domain W3C validator