Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > opelresg | Unicode version |
Description: Ordered pair membership in a restriction. Exercise 13 of [TakeutiZaring] p. 25. (Contributed by NM, 14-Oct-2005.) |
Ref | Expression |
---|---|
opelresg |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | opeq2 3738 | . . 3 | |
2 | 1 | eleq1d 2223 | . 2 |
3 | 1 | eleq1d 2223 | . . 3 |
4 | 3 | anbi1d 461 | . 2 |
5 | vex 2712 | . . 3 | |
6 | 5 | opelres 4864 | . 2 |
7 | 2, 4, 6 | vtoclbg 2770 | 1 |
Colors of variables: wff set class |
Syntax hints: wi 4 wa 103 wb 104 wceq 1332 wcel 2125 cop 3559 cres 4581 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 699 ax-5 1424 ax-7 1425 ax-gen 1426 ax-ie1 1470 ax-ie2 1471 ax-8 1481 ax-10 1482 ax-11 1483 ax-i12 1484 ax-bndl 1486 ax-4 1487 ax-17 1503 ax-i9 1507 ax-ial 1511 ax-i5r 1512 ax-14 2128 ax-ext 2136 ax-sep 4078 ax-pow 4130 ax-pr 4164 |
This theorem depends on definitions: df-bi 116 df-3an 965 df-tru 1335 df-nf 1438 df-sb 1740 df-clab 2141 df-cleq 2147 df-clel 2150 df-nfc 2285 df-ral 2437 df-rex 2438 df-v 2711 df-un 3102 df-in 3104 df-ss 3111 df-pw 3541 df-sn 3562 df-pr 3563 df-op 3565 df-opab 4022 df-xp 4585 df-res 4591 |
This theorem is referenced by: brresg 4867 opelresi 4870 issref 4961 |
Copyright terms: Public domain | W3C validator |