ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  caov13 Unicode version

Theorem caov13 6109
Description: Rearrange arguments in a commutative, associative operation. (Contributed by NM, 26-Aug-1995.)
Hypotheses
Ref Expression
caov.1  |-  A  e. 
_V
caov.2  |-  B  e. 
_V
caov.3  |-  C  e. 
_V
caov.com  |-  ( x F y )  =  ( y F x )
caov.ass  |-  ( ( x F y ) F z )  =  ( x F ( y F z ) )
Assertion
Ref Expression
caov13  |-  ( A F ( B F C ) )  =  ( C F ( B F A ) )
Distinct variable groups:    x, y, z, A    x, B, y, z    x, C, y, z    x, F, y, z

Proof of Theorem caov13
StepHypRef Expression
1 caov.1 . . 3  |-  A  e. 
_V
2 caov.2 . . 3  |-  B  e. 
_V
3 caov.3 . . 3  |-  C  e. 
_V
4 caov.com . . 3  |-  ( x F y )  =  ( y F x )
5 caov.ass . . 3  |-  ( ( x F y ) F z )  =  ( x F ( y F z ) )
61, 2, 3, 4, 5caov31 6108 . 2  |-  ( ( A F B ) F C )  =  ( ( C F B ) F A )
71, 2, 3, 5caovass 6079 . 2  |-  ( ( A F B ) F C )  =  ( A F ( B F C ) )
83, 2, 1, 5caovass 6079 . 2  |-  ( ( C F B ) F A )  =  ( C F ( B F A ) )
96, 7, 83eqtr3i 2222 1  |-  ( A F ( B F C ) )  =  ( C F ( B F A ) )
Colors of variables: wff set class
Syntax hints:    = wceq 1364    e. wcel 2164   _Vcvv 2760  (class class class)co 5918
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-ext 2175
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-nf 1472  df-sb 1774  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-ral 2477  df-rex 2478  df-v 2762  df-un 3157  df-sn 3624  df-pr 3625  df-op 3627  df-uni 3836  df-br 4030  df-iota 5215  df-fv 5262  df-ov 5921
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator