ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  caovdilemd Unicode version

Theorem caovdilemd 6044
Description: Lemma used by real number construction. (Contributed by Jim Kingdon, 16-Sep-2019.)
Hypotheses
Ref Expression
caovdilemd.com  |-  ( (
ph  /\  ( x  e.  S  /\  y  e.  S ) )  -> 
( x G y )  =  ( y G x ) )
caovdilemd.distr  |-  ( (
ph  /\  ( x  e.  S  /\  y  e.  S  /\  z  e.  S ) )  -> 
( ( x F y ) G z )  =  ( ( x G z ) F ( y G z ) ) )
caovdilemd.ass  |-  ( (
ph  /\  ( x  e.  S  /\  y  e.  S  /\  z  e.  S ) )  -> 
( ( x G y ) G z )  =  ( x G ( y G z ) ) )
caovdilemd.cl  |-  ( (
ph  /\  ( x  e.  S  /\  y  e.  S ) )  -> 
( x G y )  e.  S )
caovdilemd.a  |-  ( ph  ->  A  e.  S )
caovdilemd.b  |-  ( ph  ->  B  e.  S )
caovdilemd.c  |-  ( ph  ->  C  e.  S )
caovdilemd.d  |-  ( ph  ->  D  e.  S )
caovdilemd.h  |-  ( ph  ->  H  e.  S )
Assertion
Ref Expression
caovdilemd  |-  ( ph  ->  ( ( ( A G C ) F ( B G D ) ) G H )  =  ( ( A G ( C G H ) ) F ( B G ( D G H ) ) ) )
Distinct variable groups:    x, y, z, A    x, B, y, z    x, C, y, z    x, D, y, z    ph, x, y, z   
x, F, y, z   
x, G, y, z   
x, H, y, z   
x, S, y, z

Proof of Theorem caovdilemd
StepHypRef Expression
1 caovdilemd.distr . . 3  |-  ( (
ph  /\  ( x  e.  S  /\  y  e.  S  /\  z  e.  S ) )  -> 
( ( x F y ) G z )  =  ( ( x G z ) F ( y G z ) ) )
2 caovdilemd.cl . . . 4  |-  ( (
ph  /\  ( x  e.  S  /\  y  e.  S ) )  -> 
( x G y )  e.  S )
3 caovdilemd.a . . . 4  |-  ( ph  ->  A  e.  S )
4 caovdilemd.c . . . 4  |-  ( ph  ->  C  e.  S )
52, 3, 4caovcld 6006 . . 3  |-  ( ph  ->  ( A G C )  e.  S )
6 caovdilemd.b . . . 4  |-  ( ph  ->  B  e.  S )
7 caovdilemd.d . . . 4  |-  ( ph  ->  D  e.  S )
82, 6, 7caovcld 6006 . . 3  |-  ( ph  ->  ( B G D )  e.  S )
9 caovdilemd.h . . 3  |-  ( ph  ->  H  e.  S )
101, 5, 8, 9caovdird 6031 . 2  |-  ( ph  ->  ( ( ( A G C ) F ( B G D ) ) G H )  =  ( ( ( A G C ) G H ) F ( ( B G D ) G H ) ) )
11 caovdilemd.ass . . . 4  |-  ( (
ph  /\  ( x  e.  S  /\  y  e.  S  /\  z  e.  S ) )  -> 
( ( x G y ) G z )  =  ( x G ( y G z ) ) )
1211, 3, 4, 9caovassd 6012 . . 3  |-  ( ph  ->  ( ( A G C ) G H )  =  ( A G ( C G H ) ) )
1311, 6, 7, 9caovassd 6012 . . 3  |-  ( ph  ->  ( ( B G D ) G H )  =  ( B G ( D G H ) ) )
1412, 13oveq12d 5871 . 2  |-  ( ph  ->  ( ( ( A G C ) G H ) F ( ( B G D ) G H ) )  =  ( ( A G ( C G H ) ) F ( B G ( D G H ) ) ) )
1510, 14eqtrd 2203 1  |-  ( ph  ->  ( ( ( A G C ) F ( B G D ) ) G H )  =  ( ( A G ( C G H ) ) F ( B G ( D G H ) ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103    /\ w3a 973    = wceq 1348    e. wcel 2141  (class class class)co 5853
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 704  ax-5 1440  ax-7 1441  ax-gen 1442  ax-ie1 1486  ax-ie2 1487  ax-8 1497  ax-10 1498  ax-11 1499  ax-i12 1500  ax-bndl 1502  ax-4 1503  ax-17 1519  ax-i9 1523  ax-ial 1527  ax-i5r 1528  ax-ext 2152
This theorem depends on definitions:  df-bi 116  df-3an 975  df-tru 1351  df-nf 1454  df-sb 1756  df-clab 2157  df-cleq 2163  df-clel 2166  df-nfc 2301  df-ral 2453  df-rex 2454  df-v 2732  df-un 3125  df-sn 3589  df-pr 3590  df-op 3592  df-uni 3797  df-br 3990  df-iota 5160  df-fv 5206  df-ov 5856
This theorem is referenced by:  caovlem2d  6045  addassnqg  7344  addassnq0  7424  axmulass  7835
  Copyright terms: Public domain W3C validator