Intuitionistic Logic Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  ILE Home  >  Th. List  >  caovdilemd Unicode version

Theorem caovdilemd 5962
 Description: Lemma used by real number construction. (Contributed by Jim Kingdon, 16-Sep-2019.)
Hypotheses
Ref Expression
caovdilemd.com
caovdilemd.distr
caovdilemd.ass
caovdilemd.cl
caovdilemd.a
caovdilemd.b
caovdilemd.c
caovdilemd.d
caovdilemd.h
Assertion
Ref Expression
caovdilemd
Distinct variable groups:   ,,,   ,,,   ,,,   ,,,   ,,,   ,,,   ,,,   ,,,   ,,,

Proof of Theorem caovdilemd
StepHypRef Expression
1 caovdilemd.distr . . 3
2 caovdilemd.cl . . . 4
3 caovdilemd.a . . . 4
4 caovdilemd.c . . . 4
52, 3, 4caovcld 5924 . . 3
6 caovdilemd.b . . . 4
7 caovdilemd.d . . . 4
82, 6, 7caovcld 5924 . . 3
9 caovdilemd.h . . 3
101, 5, 8, 9caovdird 5949 . 2
11 caovdilemd.ass . . . 4
1211, 3, 4, 9caovassd 5930 . . 3
1311, 6, 7, 9caovassd 5930 . . 3
1412, 13oveq12d 5792 . 2
1510, 14eqtrd 2172 1
 Colors of variables: wff set class Syntax hints:   wi 4   wa 103   w3a 962   wceq 1331   wcel 1480  (class class class)co 5774 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 698  ax-5 1423  ax-7 1424  ax-gen 1425  ax-ie1 1469  ax-ie2 1470  ax-8 1482  ax-10 1483  ax-11 1484  ax-i12 1485  ax-bndl 1486  ax-4 1487  ax-17 1506  ax-i9 1510  ax-ial 1514  ax-i5r 1515  ax-ext 2121 This theorem depends on definitions:  df-bi 116  df-3an 964  df-tru 1334  df-nf 1437  df-sb 1736  df-clab 2126  df-cleq 2132  df-clel 2135  df-nfc 2270  df-ral 2421  df-rex 2422  df-v 2688  df-un 3075  df-sn 3533  df-pr 3534  df-op 3536  df-uni 3737  df-br 3930  df-iota 5088  df-fv 5131  df-ov 5777 This theorem is referenced by:  caovlem2d  5963  addassnqg  7197  addassnq0  7277  axmulass  7688
 Copyright terms: Public domain W3C validator