ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  caov31 Unicode version

Theorem caov31 6042
Description: Rearrange arguments in a commutative, associative operation. (Contributed by NM, 26-Aug-1995.)
Hypotheses
Ref Expression
caov.1  |-  A  e. 
_V
caov.2  |-  B  e. 
_V
caov.3  |-  C  e. 
_V
caov.com  |-  ( x F y )  =  ( y F x )
caov.ass  |-  ( ( x F y ) F z )  =  ( x F ( y F z ) )
Assertion
Ref Expression
caov31  |-  ( ( A F B ) F C )  =  ( ( C F B ) F A )
Distinct variable groups:    x, y, z, A    x, B, y, z    x, C, y, z    x, F, y, z

Proof of Theorem caov31
StepHypRef Expression
1 caov.1 . . . 4  |-  A  e. 
_V
2 caov.3 . . . 4  |-  C  e. 
_V
3 caov.2 . . . 4  |-  B  e. 
_V
4 caov.ass . . . 4  |-  ( ( x F y ) F z )  =  ( x F ( y F z ) )
51, 2, 3, 4caovass 6013 . . 3  |-  ( ( A F C ) F B )  =  ( A F ( C F B ) )
6 caov.com . . . 4  |-  ( x F y )  =  ( y F x )
71, 2, 3, 6, 4caov12 6041 . . 3  |-  ( A F ( C F B ) )  =  ( C F ( A F B ) )
85, 7eqtri 2191 . 2  |-  ( ( A F C ) F B )  =  ( C F ( A F B ) )
91, 3, 2, 6, 4caov32 6040 . 2  |-  ( ( A F B ) F C )  =  ( ( A F C ) F B )
102, 1, 3, 6, 4caov32 6040 . . 3  |-  ( ( C F A ) F B )  =  ( ( C F B ) F A )
112, 1, 3, 4caovass 6013 . . 3  |-  ( ( C F A ) F B )  =  ( C F ( A F B ) )
1210, 11eqtr3i 2193 . 2  |-  ( ( C F B ) F A )  =  ( C F ( A F B ) )
138, 9, 123eqtr4i 2201 1  |-  ( ( A F B ) F C )  =  ( ( C F B ) F A )
Colors of variables: wff set class
Syntax hints:    = wceq 1348    e. wcel 2141   _Vcvv 2730  (class class class)co 5853
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 704  ax-5 1440  ax-7 1441  ax-gen 1442  ax-ie1 1486  ax-ie2 1487  ax-8 1497  ax-10 1498  ax-11 1499  ax-i12 1500  ax-bndl 1502  ax-4 1503  ax-17 1519  ax-i9 1523  ax-ial 1527  ax-i5r 1528  ax-ext 2152
This theorem depends on definitions:  df-bi 116  df-3an 975  df-tru 1351  df-nf 1454  df-sb 1756  df-clab 2157  df-cleq 2163  df-clel 2166  df-nfc 2301  df-ral 2453  df-rex 2454  df-v 2732  df-un 3125  df-sn 3589  df-pr 3590  df-op 3592  df-uni 3797  df-br 3990  df-iota 5160  df-fv 5206  df-ov 5856
This theorem is referenced by:  caov13  6043
  Copyright terms: Public domain W3C validator