ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  caov31d Unicode version

Theorem caov31d 6079
Description: Rearrange arguments in a commutative, associative operation. (Contributed by NM, 26-Aug-1995.) (Revised by Mario Carneiro, 30-Dec-2014.)
Hypotheses
Ref Expression
caovd.1  |-  ( ph  ->  A  e.  S )
caovd.2  |-  ( ph  ->  B  e.  S )
caovd.3  |-  ( ph  ->  C  e.  S )
caovd.com  |-  ( (
ph  /\  ( x  e.  S  /\  y  e.  S ) )  -> 
( x F y )  =  ( y F x ) )
caovd.ass  |-  ( (
ph  /\  ( x  e.  S  /\  y  e.  S  /\  z  e.  S ) )  -> 
( ( x F y ) F z )  =  ( x F ( y F z ) ) )
Assertion
Ref Expression
caov31d  |-  ( ph  ->  ( ( A F B ) F C )  =  ( ( C F B ) F A ) )
Distinct variable groups:    x, y, z, A    x, B, y, z    x, C, y, z    ph, x, y, z   
x, F, y, z   
x, S, y, z

Proof of Theorem caov31d
StepHypRef Expression
1 caovd.com . . . 4  |-  ( (
ph  /\  ( x  e.  S  /\  y  e.  S ) )  -> 
( x F y )  =  ( y F x ) )
2 caovd.1 . . . 4  |-  ( ph  ->  A  e.  S )
3 caovd.3 . . . 4  |-  ( ph  ->  C  e.  S )
41, 2, 3caovcomd 6053 . . 3  |-  ( ph  ->  ( A F C )  =  ( C F A ) )
54oveq1d 5911 . 2  |-  ( ph  ->  ( ( A F C ) F B )  =  ( ( C F A ) F B ) )
6 caovd.2 . . 3  |-  ( ph  ->  B  e.  S )
7 caovd.ass . . 3  |-  ( (
ph  /\  ( x  e.  S  /\  y  e.  S  /\  z  e.  S ) )  -> 
( ( x F y ) F z )  =  ( x F ( y F z ) ) )
82, 6, 3, 1, 7caov32d 6077 . 2  |-  ( ph  ->  ( ( A F B ) F C )  =  ( ( A F C ) F B ) )
93, 6, 2, 1, 7caov32d 6077 . 2  |-  ( ph  ->  ( ( C F B ) F A )  =  ( ( C F A ) F B ) )
105, 8, 93eqtr4d 2232 1  |-  ( ph  ->  ( ( A F B ) F C )  =  ( ( C F B ) F A ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    /\ w3a 980    = wceq 1364    e. wcel 2160  (class class class)co 5896
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-ext 2171
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-nf 1472  df-sb 1774  df-clab 2176  df-cleq 2182  df-clel 2185  df-nfc 2321  df-ral 2473  df-rex 2474  df-v 2754  df-un 3148  df-sn 3613  df-pr 3614  df-op 3616  df-uni 3825  df-br 4019  df-iota 5196  df-fv 5243  df-ov 5899
This theorem is referenced by:  caov13d  6080
  Copyright terms: Public domain W3C validator