Intuitionistic Logic Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  ILE Home  >  Th. List  >  caov31d GIF version

Theorem caov31d 5963
 Description: Rearrange arguments in a commutative, associative operation. (Contributed by NM, 26-Aug-1995.) (Revised by Mario Carneiro, 30-Dec-2014.)
Hypotheses
Ref Expression
caovd.1 (𝜑𝐴𝑆)
caovd.2 (𝜑𝐵𝑆)
caovd.3 (𝜑𝐶𝑆)
caovd.com ((𝜑 ∧ (𝑥𝑆𝑦𝑆)) → (𝑥𝐹𝑦) = (𝑦𝐹𝑥))
caovd.ass ((𝜑 ∧ (𝑥𝑆𝑦𝑆𝑧𝑆)) → ((𝑥𝐹𝑦)𝐹𝑧) = (𝑥𝐹(𝑦𝐹𝑧)))
Assertion
Ref Expression
caov31d (𝜑 → ((𝐴𝐹𝐵)𝐹𝐶) = ((𝐶𝐹𝐵)𝐹𝐴))
Distinct variable groups:   𝑥,𝑦,𝑧,𝐴   𝑥,𝐵,𝑦,𝑧   𝑥,𝐶,𝑦,𝑧   𝜑,𝑥,𝑦,𝑧   𝑥,𝐹,𝑦,𝑧   𝑥,𝑆,𝑦,𝑧

Proof of Theorem caov31d
StepHypRef Expression
1 caovd.com . . . 4 ((𝜑 ∧ (𝑥𝑆𝑦𝑆)) → (𝑥𝐹𝑦) = (𝑦𝐹𝑥))
2 caovd.1 . . . 4 (𝜑𝐴𝑆)
3 caovd.3 . . . 4 (𝜑𝐶𝑆)
41, 2, 3caovcomd 5937 . . 3 (𝜑 → (𝐴𝐹𝐶) = (𝐶𝐹𝐴))
54oveq1d 5799 . 2 (𝜑 → ((𝐴𝐹𝐶)𝐹𝐵) = ((𝐶𝐹𝐴)𝐹𝐵))
6 caovd.2 . . 3 (𝜑𝐵𝑆)
7 caovd.ass . . 3 ((𝜑 ∧ (𝑥𝑆𝑦𝑆𝑧𝑆)) → ((𝑥𝐹𝑦)𝐹𝑧) = (𝑥𝐹(𝑦𝐹𝑧)))
82, 6, 3, 1, 7caov32d 5961 . 2 (𝜑 → ((𝐴𝐹𝐵)𝐹𝐶) = ((𝐴𝐹𝐶)𝐹𝐵))
93, 6, 2, 1, 7caov32d 5961 . 2 (𝜑 → ((𝐶𝐹𝐵)𝐹𝐴) = ((𝐶𝐹𝐴)𝐹𝐵))
105, 8, 93eqtr4d 2183 1 (𝜑 → ((𝐴𝐹𝐵)𝐹𝐶) = ((𝐶𝐹𝐵)𝐹𝐴))
 Colors of variables: wff set class Syntax hints:   → wi 4   ∧ wa 103   ∧ w3a 963   = wceq 1332   ∈ wcel 1481  (class class class)co 5784 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 699  ax-5 1424  ax-7 1425  ax-gen 1426  ax-ie1 1470  ax-ie2 1471  ax-8 1483  ax-10 1484  ax-11 1485  ax-i12 1486  ax-bndl 1487  ax-4 1488  ax-17 1507  ax-i9 1511  ax-ial 1515  ax-i5r 1516  ax-ext 2122 This theorem depends on definitions:  df-bi 116  df-3an 965  df-tru 1335  df-nf 1438  df-sb 1737  df-clab 2127  df-cleq 2133  df-clel 2136  df-nfc 2271  df-ral 2422  df-rex 2423  df-v 2692  df-un 3081  df-sn 3539  df-pr 3540  df-op 3542  df-uni 3746  df-br 3939  df-iota 5098  df-fv 5141  df-ov 5787 This theorem is referenced by:  caov13d  5964
 Copyright terms: Public domain W3C validator