| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > caovcomd | Unicode version | ||
| Description: Convert an operation commutative law to class notation. (Contributed by Mario Carneiro, 30-Dec-2014.) |
| Ref | Expression |
|---|---|
| caovcomg.1 |
|
| caovcomd.2 |
|
| caovcomd.3 |
|
| Ref | Expression |
|---|---|
| caovcomd |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | id 19 |
. 2
| |
| 2 | caovcomd.2 |
. 2
| |
| 3 | caovcomd.3 |
. 2
| |
| 4 | caovcomg.1 |
. . 3
| |
| 5 | 4 | caovcomg 6101 |
. 2
|
| 6 | 1, 2, 3, 5 | syl12anc 1247 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1469 ax-7 1470 ax-gen 1471 ax-ie1 1515 ax-ie2 1516 ax-8 1526 ax-10 1527 ax-11 1528 ax-i12 1529 ax-bndl 1531 ax-4 1532 ax-17 1548 ax-i9 1552 ax-ial 1556 ax-i5r 1557 ax-ext 2186 |
| This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1375 df-nf 1483 df-sb 1785 df-clab 2191 df-cleq 2197 df-clel 2200 df-nfc 2336 df-ral 2488 df-rex 2489 df-v 2773 df-un 3169 df-sn 3638 df-pr 3639 df-op 3641 df-uni 3850 df-br 4044 df-iota 5231 df-fv 5278 df-ov 5946 |
| This theorem is referenced by: caovcanrd 6109 caovord2d 6115 caovdir2d 6122 caov32d 6126 caov12d 6127 caov31d 6128 caov411d 6131 caov42d 6132 caovimo 6139 ecopovsymg 6720 ecopoverg 6722 ltsonq 7510 prarloclemlo 7606 addextpr 7733 ltsosr 7876 ltasrg 7882 mulextsr1lem 7892 seq3f1olemqsumkj 10654 seqf1oglem2a 10661 |
| Copyright terms: Public domain | W3C validator |