Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > caovcomd | Unicode version |
Description: Convert an operation commutative law to class notation. (Contributed by Mario Carneiro, 30-Dec-2014.) |
Ref | Expression |
---|---|
caovcomg.1 | |
caovcomd.2 | |
caovcomd.3 |
Ref | Expression |
---|---|
caovcomd |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | id 19 | . 2 | |
2 | caovcomd.2 | . 2 | |
3 | caovcomd.3 | . 2 | |
4 | caovcomg.1 | . . 3 | |
5 | 4 | caovcomg 5997 | . 2 |
6 | 1, 2, 3, 5 | syl12anc 1226 | 1 |
Colors of variables: wff set class |
Syntax hints: wi 4 wa 103 wceq 1343 wcel 2136 (class class class)co 5842 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 699 ax-5 1435 ax-7 1436 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-8 1492 ax-10 1493 ax-11 1494 ax-i12 1495 ax-bndl 1497 ax-4 1498 ax-17 1514 ax-i9 1518 ax-ial 1522 ax-i5r 1523 ax-ext 2147 |
This theorem depends on definitions: df-bi 116 df-3an 970 df-tru 1346 df-nf 1449 df-sb 1751 df-clab 2152 df-cleq 2158 df-clel 2161 df-nfc 2297 df-ral 2449 df-rex 2450 df-v 2728 df-un 3120 df-sn 3582 df-pr 3583 df-op 3585 df-uni 3790 df-br 3983 df-iota 5153 df-fv 5196 df-ov 5845 |
This theorem is referenced by: caovcanrd 6005 caovord2d 6011 caovdir2d 6018 caov32d 6022 caov12d 6023 caov31d 6024 caov411d 6027 caov42d 6028 caovimo 6035 ecopovsymg 6600 ecopoverg 6602 ltsonq 7339 prarloclemlo 7435 addextpr 7562 ltsosr 7705 ltasrg 7711 mulextsr1lem 7721 seq3f1olemqsumkj 10433 |
Copyright terms: Public domain | W3C validator |