| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > caovcomd | Unicode version | ||
| Description: Convert an operation commutative law to class notation. (Contributed by Mario Carneiro, 30-Dec-2014.) |
| Ref | Expression |
|---|---|
| caovcomg.1 |
|
| caovcomd.2 |
|
| caovcomd.3 |
|
| Ref | Expression |
|---|---|
| caovcomd |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | id 19 |
. 2
| |
| 2 | caovcomd.2 |
. 2
| |
| 3 | caovcomd.3 |
. 2
| |
| 4 | caovcomg.1 |
. . 3
| |
| 5 | 4 | caovcomg 6079 |
. 2
|
| 6 | 1, 2, 3, 5 | syl12anc 1247 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-ext 2178 |
| This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-nf 1475 df-sb 1777 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-ral 2480 df-rex 2481 df-v 2765 df-un 3161 df-sn 3628 df-pr 3629 df-op 3631 df-uni 3840 df-br 4034 df-iota 5219 df-fv 5266 df-ov 5925 |
| This theorem is referenced by: caovcanrd 6087 caovord2d 6093 caovdir2d 6100 caov32d 6104 caov12d 6105 caov31d 6106 caov411d 6109 caov42d 6110 caovimo 6117 ecopovsymg 6693 ecopoverg 6695 ltsonq 7465 prarloclemlo 7561 addextpr 7688 ltsosr 7831 ltasrg 7837 mulextsr1lem 7847 seq3f1olemqsumkj 10603 seqf1oglem2a 10610 |
| Copyright terms: Public domain | W3C validator |