| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > caovcomd | Unicode version | ||
| Description: Convert an operation commutative law to class notation. (Contributed by Mario Carneiro, 30-Dec-2014.) |
| Ref | Expression |
|---|---|
| caovcomg.1 |
|
| caovcomd.2 |
|
| caovcomd.3 |
|
| Ref | Expression |
|---|---|
| caovcomd |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | id 19 |
. 2
| |
| 2 | caovcomd.2 |
. 2
| |
| 3 | caovcomd.3 |
. 2
| |
| 4 | caovcomg.1 |
. . 3
| |
| 5 | 4 | caovcomg 6160 |
. 2
|
| 6 | 1, 2, 3, 5 | syl12anc 1269 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-ext 2211 |
| This theorem depends on definitions: df-bi 117 df-3an 1004 df-tru 1398 df-nf 1507 df-sb 1809 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-ral 2513 df-rex 2514 df-v 2801 df-un 3201 df-sn 3672 df-pr 3673 df-op 3675 df-uni 3888 df-br 4083 df-iota 5277 df-fv 5325 df-ov 6003 |
| This theorem is referenced by: caovcanrd 6168 caovord2d 6174 caovdir2d 6181 caov32d 6185 caov12d 6186 caov31d 6187 caov411d 6190 caov42d 6191 caovimo 6198 ecopovsymg 6779 ecopoverg 6781 ltsonq 7581 prarloclemlo 7677 addextpr 7804 ltsosr 7947 ltasrg 7953 mulextsr1lem 7963 seq3f1olemqsumkj 10728 seqf1oglem2a 10735 |
| Copyright terms: Public domain | W3C validator |