Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > caovcomd | Unicode version |
Description: Convert an operation commutative law to class notation. (Contributed by Mario Carneiro, 30-Dec-2014.) |
Ref | Expression |
---|---|
caovcomg.1 | |
caovcomd.2 | |
caovcomd.3 |
Ref | Expression |
---|---|
caovcomd |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | id 19 | . 2 | |
2 | caovcomd.2 | . 2 | |
3 | caovcomd.3 | . 2 | |
4 | caovcomg.1 | . . 3 | |
5 | 4 | caovcomg 6006 | . 2 |
6 | 1, 2, 3, 5 | syl12anc 1231 | 1 |
Colors of variables: wff set class |
Syntax hints: wi 4 wa 103 wceq 1348 wcel 2141 (class class class)co 5851 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 704 ax-5 1440 ax-7 1441 ax-gen 1442 ax-ie1 1486 ax-ie2 1487 ax-8 1497 ax-10 1498 ax-11 1499 ax-i12 1500 ax-bndl 1502 ax-4 1503 ax-17 1519 ax-i9 1523 ax-ial 1527 ax-i5r 1528 ax-ext 2152 |
This theorem depends on definitions: df-bi 116 df-3an 975 df-tru 1351 df-nf 1454 df-sb 1756 df-clab 2157 df-cleq 2163 df-clel 2166 df-nfc 2301 df-ral 2453 df-rex 2454 df-v 2732 df-un 3125 df-sn 3587 df-pr 3588 df-op 3590 df-uni 3795 df-br 3988 df-iota 5158 df-fv 5204 df-ov 5854 |
This theorem is referenced by: caovcanrd 6014 caovord2d 6020 caovdir2d 6027 caov32d 6031 caov12d 6032 caov31d 6033 caov411d 6036 caov42d 6037 caovimo 6044 ecopovsymg 6609 ecopoverg 6611 ltsonq 7349 prarloclemlo 7445 addextpr 7572 ltsosr 7715 ltasrg 7721 mulextsr1lem 7731 seq3f1olemqsumkj 10443 |
Copyright terms: Public domain | W3C validator |