ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  caovcomd Unicode version

Theorem caovcomd 6009
Description: Convert an operation commutative law to class notation. (Contributed by Mario Carneiro, 30-Dec-2014.)
Hypotheses
Ref Expression
caovcomg.1  |-  ( (
ph  /\  ( x  e.  S  /\  y  e.  S ) )  -> 
( x F y )  =  ( y F x ) )
caovcomd.2  |-  ( ph  ->  A  e.  S )
caovcomd.3  |-  ( ph  ->  B  e.  S )
Assertion
Ref Expression
caovcomd  |-  ( ph  ->  ( A F B )  =  ( B F A ) )
Distinct variable groups:    x, y, A   
x, B, y    ph, x, y    x, F, y    x, S, y

Proof of Theorem caovcomd
StepHypRef Expression
1 id 19 . 2  |-  ( ph  ->  ph )
2 caovcomd.2 . 2  |-  ( ph  ->  A  e.  S )
3 caovcomd.3 . 2  |-  ( ph  ->  B  e.  S )
4 caovcomg.1 . . 3  |-  ( (
ph  /\  ( x  e.  S  /\  y  e.  S ) )  -> 
( x F y )  =  ( y F x ) )
54caovcomg 6008 . 2  |-  ( (
ph  /\  ( A  e.  S  /\  B  e.  S ) )  -> 
( A F B )  =  ( B F A ) )
61, 2, 3, 5syl12anc 1231 1  |-  ( ph  ->  ( A F B )  =  ( B F A ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103    = wceq 1348    e. wcel 2141  (class class class)co 5853
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 704  ax-5 1440  ax-7 1441  ax-gen 1442  ax-ie1 1486  ax-ie2 1487  ax-8 1497  ax-10 1498  ax-11 1499  ax-i12 1500  ax-bndl 1502  ax-4 1503  ax-17 1519  ax-i9 1523  ax-ial 1527  ax-i5r 1528  ax-ext 2152
This theorem depends on definitions:  df-bi 116  df-3an 975  df-tru 1351  df-nf 1454  df-sb 1756  df-clab 2157  df-cleq 2163  df-clel 2166  df-nfc 2301  df-ral 2453  df-rex 2454  df-v 2732  df-un 3125  df-sn 3589  df-pr 3590  df-op 3592  df-uni 3797  df-br 3990  df-iota 5160  df-fv 5206  df-ov 5856
This theorem is referenced by:  caovcanrd  6016  caovord2d  6022  caovdir2d  6029  caov32d  6033  caov12d  6034  caov31d  6035  caov411d  6038  caov42d  6039  caovimo  6046  ecopovsymg  6612  ecopoverg  6614  ltsonq  7360  prarloclemlo  7456  addextpr  7583  ltsosr  7726  ltasrg  7732  mulextsr1lem  7742  seq3f1olemqsumkj  10454
  Copyright terms: Public domain W3C validator