| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > caovcomd | Unicode version | ||
| Description: Convert an operation commutative law to class notation. (Contributed by Mario Carneiro, 30-Dec-2014.) |
| Ref | Expression |
|---|---|
| caovcomg.1 |
|
| caovcomd.2 |
|
| caovcomd.3 |
|
| Ref | Expression |
|---|---|
| caovcomd |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | id 19 |
. 2
| |
| 2 | caovcomd.2 |
. 2
| |
| 3 | caovcomd.3 |
. 2
| |
| 4 | caovcomg.1 |
. . 3
| |
| 5 | 4 | caovcomg 6125 |
. 2
|
| 6 | 1, 2, 3, 5 | syl12anc 1248 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-ext 2189 |
| This theorem depends on definitions: df-bi 117 df-3an 983 df-tru 1376 df-nf 1485 df-sb 1787 df-clab 2194 df-cleq 2200 df-clel 2203 df-nfc 2339 df-ral 2491 df-rex 2492 df-v 2778 df-un 3178 df-sn 3649 df-pr 3650 df-op 3652 df-uni 3865 df-br 4060 df-iota 5251 df-fv 5298 df-ov 5970 |
| This theorem is referenced by: caovcanrd 6133 caovord2d 6139 caovdir2d 6146 caov32d 6150 caov12d 6151 caov31d 6152 caov411d 6155 caov42d 6156 caovimo 6163 ecopovsymg 6744 ecopoverg 6746 ltsonq 7546 prarloclemlo 7642 addextpr 7769 ltsosr 7912 ltasrg 7918 mulextsr1lem 7928 seq3f1olemqsumkj 10693 seqf1oglem2a 10700 |
| Copyright terms: Public domain | W3C validator |