ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  caovcomd Unicode version

Theorem caovcomd 6080
Description: Convert an operation commutative law to class notation. (Contributed by Mario Carneiro, 30-Dec-2014.)
Hypotheses
Ref Expression
caovcomg.1  |-  ( (
ph  /\  ( x  e.  S  /\  y  e.  S ) )  -> 
( x F y )  =  ( y F x ) )
caovcomd.2  |-  ( ph  ->  A  e.  S )
caovcomd.3  |-  ( ph  ->  B  e.  S )
Assertion
Ref Expression
caovcomd  |-  ( ph  ->  ( A F B )  =  ( B F A ) )
Distinct variable groups:    x, y, A   
x, B, y    ph, x, y    x, F, y    x, S, y

Proof of Theorem caovcomd
StepHypRef Expression
1 id 19 . 2  |-  ( ph  ->  ph )
2 caovcomd.2 . 2  |-  ( ph  ->  A  e.  S )
3 caovcomd.3 . 2  |-  ( ph  ->  B  e.  S )
4 caovcomg.1 . . 3  |-  ( (
ph  /\  ( x  e.  S  /\  y  e.  S ) )  -> 
( x F y )  =  ( y F x ) )
54caovcomg 6079 . 2  |-  ( (
ph  /\  ( A  e.  S  /\  B  e.  S ) )  -> 
( A F B )  =  ( B F A ) )
61, 2, 3, 5syl12anc 1247 1  |-  ( ph  ->  ( A F B )  =  ( B F A ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    = wceq 1364    e. wcel 2167  (class class class)co 5922
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-ext 2178
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-nf 1475  df-sb 1777  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ral 2480  df-rex 2481  df-v 2765  df-un 3161  df-sn 3628  df-pr 3629  df-op 3631  df-uni 3840  df-br 4034  df-iota 5219  df-fv 5266  df-ov 5925
This theorem is referenced by:  caovcanrd  6087  caovord2d  6093  caovdir2d  6100  caov32d  6104  caov12d  6105  caov31d  6106  caov411d  6109  caov42d  6110  caovimo  6117  ecopovsymg  6693  ecopoverg  6695  ltsonq  7465  prarloclemlo  7561  addextpr  7688  ltsosr  7831  ltasrg  7837  mulextsr1lem  7847  seq3f1olemqsumkj  10603  seqf1oglem2a  10610
  Copyright terms: Public domain W3C validator