| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > caovcomd | Unicode version | ||
| Description: Convert an operation commutative law to class notation. (Contributed by Mario Carneiro, 30-Dec-2014.) |
| Ref | Expression |
|---|---|
| caovcomg.1 |
|
| caovcomd.2 |
|
| caovcomd.3 |
|
| Ref | Expression |
|---|---|
| caovcomd |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | id 19 |
. 2
| |
| 2 | caovcomd.2 |
. 2
| |
| 3 | caovcomd.3 |
. 2
| |
| 4 | caovcomg.1 |
. . 3
| |
| 5 | 4 | caovcomg 6102 |
. 2
|
| 6 | 1, 2, 3, 5 | syl12anc 1248 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 711 ax-5 1470 ax-7 1471 ax-gen 1472 ax-ie1 1516 ax-ie2 1517 ax-8 1527 ax-10 1528 ax-11 1529 ax-i12 1530 ax-bndl 1532 ax-4 1533 ax-17 1549 ax-i9 1553 ax-ial 1557 ax-i5r 1558 ax-ext 2187 |
| This theorem depends on definitions: df-bi 117 df-3an 983 df-tru 1376 df-nf 1484 df-sb 1786 df-clab 2192 df-cleq 2198 df-clel 2201 df-nfc 2337 df-ral 2489 df-rex 2490 df-v 2774 df-un 3170 df-sn 3639 df-pr 3640 df-op 3642 df-uni 3851 df-br 4045 df-iota 5232 df-fv 5279 df-ov 5947 |
| This theorem is referenced by: caovcanrd 6110 caovord2d 6116 caovdir2d 6123 caov32d 6127 caov12d 6128 caov31d 6129 caov411d 6132 caov42d 6133 caovimo 6140 ecopovsymg 6721 ecopoverg 6723 ltsonq 7511 prarloclemlo 7607 addextpr 7734 ltsosr 7877 ltasrg 7883 mulextsr1lem 7893 seq3f1olemqsumkj 10656 seqf1oglem2a 10663 |
| Copyright terms: Public domain | W3C validator |