ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  caov32d Unicode version

Theorem caov32d 6104
Description: Rearrange arguments in a commutative, associative operation. (Contributed by NM, 26-Aug-1995.) (Revised by Mario Carneiro, 30-Dec-2014.)
Hypotheses
Ref Expression
caovd.1  |-  ( ph  ->  A  e.  S )
caovd.2  |-  ( ph  ->  B  e.  S )
caovd.3  |-  ( ph  ->  C  e.  S )
caovd.com  |-  ( (
ph  /\  ( x  e.  S  /\  y  e.  S ) )  -> 
( x F y )  =  ( y F x ) )
caovd.ass  |-  ( (
ph  /\  ( x  e.  S  /\  y  e.  S  /\  z  e.  S ) )  -> 
( ( x F y ) F z )  =  ( x F ( y F z ) ) )
Assertion
Ref Expression
caov32d  |-  ( ph  ->  ( ( A F B ) F C )  =  ( ( A F C ) F B ) )
Distinct variable groups:    x, y, z, A    x, B, y, z    x, C, y, z    ph, x, y, z   
x, F, y, z   
x, S, y, z

Proof of Theorem caov32d
StepHypRef Expression
1 caovd.com . . . 4  |-  ( (
ph  /\  ( x  e.  S  /\  y  e.  S ) )  -> 
( x F y )  =  ( y F x ) )
2 caovd.2 . . . 4  |-  ( ph  ->  B  e.  S )
3 caovd.3 . . . 4  |-  ( ph  ->  C  e.  S )
41, 2, 3caovcomd 6080 . . 3  |-  ( ph  ->  ( B F C )  =  ( C F B ) )
54oveq2d 5938 . 2  |-  ( ph  ->  ( A F ( B F C ) )  =  ( A F ( C F B ) ) )
6 caovd.ass . . 3  |-  ( (
ph  /\  ( x  e.  S  /\  y  e.  S  /\  z  e.  S ) )  -> 
( ( x F y ) F z )  =  ( x F ( y F z ) ) )
7 caovd.1 . . 3  |-  ( ph  ->  A  e.  S )
86, 7, 2, 3caovassd 6083 . 2  |-  ( ph  ->  ( ( A F B ) F C )  =  ( A F ( B F C ) ) )
96, 7, 3, 2caovassd 6083 . 2  |-  ( ph  ->  ( ( A F C ) F B )  =  ( A F ( C F B ) ) )
105, 8, 93eqtr4d 2239 1  |-  ( ph  ->  ( ( A F B ) F C )  =  ( ( A F C ) F B ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    /\ w3a 980    = wceq 1364    e. wcel 2167  (class class class)co 5922
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-ext 2178
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-nf 1475  df-sb 1777  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ral 2480  df-rex 2481  df-v 2765  df-un 3161  df-sn 3628  df-pr 3629  df-op 3631  df-uni 3840  df-br 4034  df-iota 5219  df-fv 5266  df-ov 5925
This theorem is referenced by:  caov31d  6106  mulcanenq  7452  mulcanenq0ec  7512  ltexprlemrl  7677  ltexprlemru  7679  cauappcvgprlemladdfl  7722  cauappcvgprlemladdru  7723  mulcmpblnrlemg  7807  ltsosr  7831  recexgt0sr  7840  mulgt0sr  7845  caucvgsrlemoffcau  7865  caucvgsrlemoffres  7867  resqrexlemover  11175
  Copyright terms: Public domain W3C validator