ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  caov12d Unicode version

Theorem caov12d 5952
Description: Rearrange arguments in a commutative, associative operation. (Contributed by NM, 26-Aug-1995.) (Revised by Mario Carneiro, 30-Dec-2014.)
Hypotheses
Ref Expression
caovd.1  |-  ( ph  ->  A  e.  S )
caovd.2  |-  ( ph  ->  B  e.  S )
caovd.3  |-  ( ph  ->  C  e.  S )
caovd.com  |-  ( (
ph  /\  ( x  e.  S  /\  y  e.  S ) )  -> 
( x F y )  =  ( y F x ) )
caovd.ass  |-  ( (
ph  /\  ( x  e.  S  /\  y  e.  S  /\  z  e.  S ) )  -> 
( ( x F y ) F z )  =  ( x F ( y F z ) ) )
Assertion
Ref Expression
caov12d  |-  ( ph  ->  ( A F ( B F C ) )  =  ( B F ( A F C ) ) )
Distinct variable groups:    x, y, z, A    x, B, y, z    x, C, y, z    ph, x, y, z   
x, F, y, z   
x, S, y, z

Proof of Theorem caov12d
StepHypRef Expression
1 caovd.com . . . 4  |-  ( (
ph  /\  ( x  e.  S  /\  y  e.  S ) )  -> 
( x F y )  =  ( y F x ) )
2 caovd.1 . . . 4  |-  ( ph  ->  A  e.  S )
3 caovd.2 . . . 4  |-  ( ph  ->  B  e.  S )
41, 2, 3caovcomd 5927 . . 3  |-  ( ph  ->  ( A F B )  =  ( B F A ) )
54oveq1d 5789 . 2  |-  ( ph  ->  ( ( A F B ) F C )  =  ( ( B F A ) F C ) )
6 caovd.ass . . 3  |-  ( (
ph  /\  ( x  e.  S  /\  y  e.  S  /\  z  e.  S ) )  -> 
( ( x F y ) F z )  =  ( x F ( y F z ) ) )
7 caovd.3 . . 3  |-  ( ph  ->  C  e.  S )
86, 2, 3, 7caovassd 5930 . 2  |-  ( ph  ->  ( ( A F B ) F C )  =  ( A F ( B F C ) ) )
96, 3, 2, 7caovassd 5930 . 2  |-  ( ph  ->  ( ( B F A ) F C )  =  ( B F ( A F C ) ) )
105, 8, 93eqtr3d 2180 1  |-  ( ph  ->  ( A F ( B F C ) )  =  ( B F ( A F C ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103    /\ w3a 962    = wceq 1331    e. wcel 1480  (class class class)co 5774
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 698  ax-5 1423  ax-7 1424  ax-gen 1425  ax-ie1 1469  ax-ie2 1470  ax-8 1482  ax-10 1483  ax-11 1484  ax-i12 1485  ax-bndl 1486  ax-4 1487  ax-17 1506  ax-i9 1510  ax-ial 1514  ax-i5r 1515  ax-ext 2121
This theorem depends on definitions:  df-bi 116  df-3an 964  df-tru 1334  df-nf 1437  df-sb 1736  df-clab 2126  df-cleq 2132  df-clel 2135  df-nfc 2270  df-ral 2421  df-rex 2422  df-v 2688  df-un 3075  df-sn 3533  df-pr 3534  df-op 3536  df-uni 3737  df-br 3930  df-iota 5088  df-fv 5131  df-ov 5777
This theorem is referenced by:  caov4d  5955  caovimo  5964  ltaddnq  7227  ltexnqq  7228  enq0tr  7254  mullocprlem  7390  1idprl  7410  1idpru  7411  cauappcvgprlemdisj  7471  mulcmpblnrlemg  7560  lttrsr  7582  ltsosr  7584  0idsr  7587  1idsr  7588  recexgt0sr  7593  mulgt0sr  7598  axmulass  7693
  Copyright terms: Public domain W3C validator