ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  caov12d Unicode version

Theorem caov12d 6023
Description: Rearrange arguments in a commutative, associative operation. (Contributed by NM, 26-Aug-1995.) (Revised by Mario Carneiro, 30-Dec-2014.)
Hypotheses
Ref Expression
caovd.1  |-  ( ph  ->  A  e.  S )
caovd.2  |-  ( ph  ->  B  e.  S )
caovd.3  |-  ( ph  ->  C  e.  S )
caovd.com  |-  ( (
ph  /\  ( x  e.  S  /\  y  e.  S ) )  -> 
( x F y )  =  ( y F x ) )
caovd.ass  |-  ( (
ph  /\  ( x  e.  S  /\  y  e.  S  /\  z  e.  S ) )  -> 
( ( x F y ) F z )  =  ( x F ( y F z ) ) )
Assertion
Ref Expression
caov12d  |-  ( ph  ->  ( A F ( B F C ) )  =  ( B F ( A F C ) ) )
Distinct variable groups:    x, y, z, A    x, B, y, z    x, C, y, z    ph, x, y, z   
x, F, y, z   
x, S, y, z

Proof of Theorem caov12d
StepHypRef Expression
1 caovd.com . . . 4  |-  ( (
ph  /\  ( x  e.  S  /\  y  e.  S ) )  -> 
( x F y )  =  ( y F x ) )
2 caovd.1 . . . 4  |-  ( ph  ->  A  e.  S )
3 caovd.2 . . . 4  |-  ( ph  ->  B  e.  S )
41, 2, 3caovcomd 5998 . . 3  |-  ( ph  ->  ( A F B )  =  ( B F A ) )
54oveq1d 5857 . 2  |-  ( ph  ->  ( ( A F B ) F C )  =  ( ( B F A ) F C ) )
6 caovd.ass . . 3  |-  ( (
ph  /\  ( x  e.  S  /\  y  e.  S  /\  z  e.  S ) )  -> 
( ( x F y ) F z )  =  ( x F ( y F z ) ) )
7 caovd.3 . . 3  |-  ( ph  ->  C  e.  S )
86, 2, 3, 7caovassd 6001 . 2  |-  ( ph  ->  ( ( A F B ) F C )  =  ( A F ( B F C ) ) )
96, 3, 2, 7caovassd 6001 . 2  |-  ( ph  ->  ( ( B F A ) F C )  =  ( B F ( A F C ) ) )
105, 8, 93eqtr3d 2206 1  |-  ( ph  ->  ( A F ( B F C ) )  =  ( B F ( A F C ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103    /\ w3a 968    = wceq 1343    e. wcel 2136  (class class class)co 5842
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 699  ax-5 1435  ax-7 1436  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-10 1493  ax-11 1494  ax-i12 1495  ax-bndl 1497  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522  ax-i5r 1523  ax-ext 2147
This theorem depends on definitions:  df-bi 116  df-3an 970  df-tru 1346  df-nf 1449  df-sb 1751  df-clab 2152  df-cleq 2158  df-clel 2161  df-nfc 2297  df-ral 2449  df-rex 2450  df-v 2728  df-un 3120  df-sn 3582  df-pr 3583  df-op 3585  df-uni 3790  df-br 3983  df-iota 5153  df-fv 5196  df-ov 5845
This theorem is referenced by:  caov4d  6026  caovimo  6035  ltaddnq  7348  ltexnqq  7349  enq0tr  7375  mullocprlem  7511  1idprl  7531  1idpru  7532  cauappcvgprlemdisj  7592  mulcmpblnrlemg  7681  lttrsr  7703  ltsosr  7705  0idsr  7708  1idsr  7709  recexgt0sr  7714  mulgt0sr  7719  axmulass  7814
  Copyright terms: Public domain W3C validator