ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  caov12d Unicode version

Theorem caov12d 6187
Description: Rearrange arguments in a commutative, associative operation. (Contributed by NM, 26-Aug-1995.) (Revised by Mario Carneiro, 30-Dec-2014.)
Hypotheses
Ref Expression
caovd.1  |-  ( ph  ->  A  e.  S )
caovd.2  |-  ( ph  ->  B  e.  S )
caovd.3  |-  ( ph  ->  C  e.  S )
caovd.com  |-  ( (
ph  /\  ( x  e.  S  /\  y  e.  S ) )  -> 
( x F y )  =  ( y F x ) )
caovd.ass  |-  ( (
ph  /\  ( x  e.  S  /\  y  e.  S  /\  z  e.  S ) )  -> 
( ( x F y ) F z )  =  ( x F ( y F z ) ) )
Assertion
Ref Expression
caov12d  |-  ( ph  ->  ( A F ( B F C ) )  =  ( B F ( A F C ) ) )
Distinct variable groups:    x, y, z, A    x, B, y, z    x, C, y, z    ph, x, y, z   
x, F, y, z   
x, S, y, z

Proof of Theorem caov12d
StepHypRef Expression
1 caovd.com . . . 4  |-  ( (
ph  /\  ( x  e.  S  /\  y  e.  S ) )  -> 
( x F y )  =  ( y F x ) )
2 caovd.1 . . . 4  |-  ( ph  ->  A  e.  S )
3 caovd.2 . . . 4  |-  ( ph  ->  B  e.  S )
41, 2, 3caovcomd 6162 . . 3  |-  ( ph  ->  ( A F B )  =  ( B F A ) )
54oveq1d 6016 . 2  |-  ( ph  ->  ( ( A F B ) F C )  =  ( ( B F A ) F C ) )
6 caovd.ass . . 3  |-  ( (
ph  /\  ( x  e.  S  /\  y  e.  S  /\  z  e.  S ) )  -> 
( ( x F y ) F z )  =  ( x F ( y F z ) ) )
7 caovd.3 . . 3  |-  ( ph  ->  C  e.  S )
86, 2, 3, 7caovassd 6165 . 2  |-  ( ph  ->  ( ( A F B ) F C )  =  ( A F ( B F C ) ) )
96, 3, 2, 7caovassd 6165 . 2  |-  ( ph  ->  ( ( B F A ) F C )  =  ( B F ( A F C ) ) )
105, 8, 93eqtr3d 2270 1  |-  ( ph  ->  ( A F ( B F C ) )  =  ( B F ( A F C ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    /\ w3a 1002    = wceq 1395    e. wcel 2200  (class class class)co 6001
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-ext 2211
This theorem depends on definitions:  df-bi 117  df-3an 1004  df-tru 1398  df-nf 1507  df-sb 1809  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ral 2513  df-rex 2514  df-v 2801  df-un 3201  df-sn 3672  df-pr 3673  df-op 3675  df-uni 3889  df-br 4084  df-iota 5278  df-fv 5326  df-ov 6004
This theorem is referenced by:  caov4d  6190  caovimo  6199  ltaddnq  7594  ltexnqq  7595  enq0tr  7621  mullocprlem  7757  1idprl  7777  1idpru  7778  cauappcvgprlemdisj  7838  mulcmpblnrlemg  7927  lttrsr  7949  ltsosr  7951  0idsr  7954  1idsr  7955  recexgt0sr  7960  mulgt0sr  7965  axmulass  8060
  Copyright terms: Public domain W3C validator