ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  caov12d Unicode version

Theorem caov12d 6034
Description: Rearrange arguments in a commutative, associative operation. (Contributed by NM, 26-Aug-1995.) (Revised by Mario Carneiro, 30-Dec-2014.)
Hypotheses
Ref Expression
caovd.1  |-  ( ph  ->  A  e.  S )
caovd.2  |-  ( ph  ->  B  e.  S )
caovd.3  |-  ( ph  ->  C  e.  S )
caovd.com  |-  ( (
ph  /\  ( x  e.  S  /\  y  e.  S ) )  -> 
( x F y )  =  ( y F x ) )
caovd.ass  |-  ( (
ph  /\  ( x  e.  S  /\  y  e.  S  /\  z  e.  S ) )  -> 
( ( x F y ) F z )  =  ( x F ( y F z ) ) )
Assertion
Ref Expression
caov12d  |-  ( ph  ->  ( A F ( B F C ) )  =  ( B F ( A F C ) ) )
Distinct variable groups:    x, y, z, A    x, B, y, z    x, C, y, z    ph, x, y, z   
x, F, y, z   
x, S, y, z

Proof of Theorem caov12d
StepHypRef Expression
1 caovd.com . . . 4  |-  ( (
ph  /\  ( x  e.  S  /\  y  e.  S ) )  -> 
( x F y )  =  ( y F x ) )
2 caovd.1 . . . 4  |-  ( ph  ->  A  e.  S )
3 caovd.2 . . . 4  |-  ( ph  ->  B  e.  S )
41, 2, 3caovcomd 6009 . . 3  |-  ( ph  ->  ( A F B )  =  ( B F A ) )
54oveq1d 5868 . 2  |-  ( ph  ->  ( ( A F B ) F C )  =  ( ( B F A ) F C ) )
6 caovd.ass . . 3  |-  ( (
ph  /\  ( x  e.  S  /\  y  e.  S  /\  z  e.  S ) )  -> 
( ( x F y ) F z )  =  ( x F ( y F z ) ) )
7 caovd.3 . . 3  |-  ( ph  ->  C  e.  S )
86, 2, 3, 7caovassd 6012 . 2  |-  ( ph  ->  ( ( A F B ) F C )  =  ( A F ( B F C ) ) )
96, 3, 2, 7caovassd 6012 . 2  |-  ( ph  ->  ( ( B F A ) F C )  =  ( B F ( A F C ) ) )
105, 8, 93eqtr3d 2211 1  |-  ( ph  ->  ( A F ( B F C ) )  =  ( B F ( A F C ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103    /\ w3a 973    = wceq 1348    e. wcel 2141  (class class class)co 5853
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 704  ax-5 1440  ax-7 1441  ax-gen 1442  ax-ie1 1486  ax-ie2 1487  ax-8 1497  ax-10 1498  ax-11 1499  ax-i12 1500  ax-bndl 1502  ax-4 1503  ax-17 1519  ax-i9 1523  ax-ial 1527  ax-i5r 1528  ax-ext 2152
This theorem depends on definitions:  df-bi 116  df-3an 975  df-tru 1351  df-nf 1454  df-sb 1756  df-clab 2157  df-cleq 2163  df-clel 2166  df-nfc 2301  df-ral 2453  df-rex 2454  df-v 2732  df-un 3125  df-sn 3589  df-pr 3590  df-op 3592  df-uni 3797  df-br 3990  df-iota 5160  df-fv 5206  df-ov 5856
This theorem is referenced by:  caov4d  6037  caovimo  6046  ltaddnq  7369  ltexnqq  7370  enq0tr  7396  mullocprlem  7532  1idprl  7552  1idpru  7553  cauappcvgprlemdisj  7613  mulcmpblnrlemg  7702  lttrsr  7724  ltsosr  7726  0idsr  7729  1idsr  7730  recexgt0sr  7735  mulgt0sr  7740  axmulass  7835
  Copyright terms: Public domain W3C validator