ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  caovdig Unicode version

Theorem caovdig 6063
Description: Convert an operation distributive law to class notation. (Contributed by NM, 25-Aug-1995.) (Revised by Mario Carneiro, 26-Jul-2014.)
Hypothesis
Ref Expression
caovdig.1  |-  ( (
ph  /\  ( x  e.  K  /\  y  e.  S  /\  z  e.  S ) )  -> 
( x G ( y F z ) )  =  ( ( x G y ) H ( x G z ) ) )
Assertion
Ref Expression
caovdig  |-  ( (
ph  /\  ( A  e.  K  /\  B  e.  S  /\  C  e.  S ) )  -> 
( A G ( B F C ) )  =  ( ( A G B ) H ( A G C ) ) )
Distinct variable groups:    x, y, z, A    x, B, y, z    x, C, y, z    ph, x, y, z   
x, F, y, z   
x, G, y, z   
x, H, y, z   
x, K, y, z   
x, S, y, z

Proof of Theorem caovdig
StepHypRef Expression
1 caovdig.1 . . 3  |-  ( (
ph  /\  ( x  e.  K  /\  y  e.  S  /\  z  e.  S ) )  -> 
( x G ( y F z ) )  =  ( ( x G y ) H ( x G z ) ) )
21ralrimivvva 2570 . 2  |-  ( ph  ->  A. x  e.  K  A. y  e.  S  A. z  e.  S  ( x G ( y F z ) )  =  ( ( x G y ) H ( x G z ) ) )
3 oveq1 5895 . . . 4  |-  ( x  =  A  ->  (
x G ( y F z ) )  =  ( A G ( y F z ) ) )
4 oveq1 5895 . . . . 5  |-  ( x  =  A  ->  (
x G y )  =  ( A G y ) )
5 oveq1 5895 . . . . 5  |-  ( x  =  A  ->  (
x G z )  =  ( A G z ) )
64, 5oveq12d 5906 . . . 4  |-  ( x  =  A  ->  (
( x G y ) H ( x G z ) )  =  ( ( A G y ) H ( A G z ) ) )
73, 6eqeq12d 2202 . . 3  |-  ( x  =  A  ->  (
( x G ( y F z ) )  =  ( ( x G y ) H ( x G z ) )  <->  ( A G ( y F z ) )  =  ( ( A G y ) H ( A G z ) ) ) )
8 oveq1 5895 . . . . 5  |-  ( y  =  B  ->  (
y F z )  =  ( B F z ) )
98oveq2d 5904 . . . 4  |-  ( y  =  B  ->  ( A G ( y F z ) )  =  ( A G ( B F z ) ) )
10 oveq2 5896 . . . . 5  |-  ( y  =  B  ->  ( A G y )  =  ( A G B ) )
1110oveq1d 5903 . . . 4  |-  ( y  =  B  ->  (
( A G y ) H ( A G z ) )  =  ( ( A G B ) H ( A G z ) ) )
129, 11eqeq12d 2202 . . 3  |-  ( y  =  B  ->  (
( A G ( y F z ) )  =  ( ( A G y ) H ( A G z ) )  <->  ( A G ( B F z ) )  =  ( ( A G B ) H ( A G z ) ) ) )
13 oveq2 5896 . . . . 5  |-  ( z  =  C  ->  ( B F z )  =  ( B F C ) )
1413oveq2d 5904 . . . 4  |-  ( z  =  C  ->  ( A G ( B F z ) )  =  ( A G ( B F C ) ) )
15 oveq2 5896 . . . . 5  |-  ( z  =  C  ->  ( A G z )  =  ( A G C ) )
1615oveq2d 5904 . . . 4  |-  ( z  =  C  ->  (
( A G B ) H ( A G z ) )  =  ( ( A G B ) H ( A G C ) ) )
1714, 16eqeq12d 2202 . . 3  |-  ( z  =  C  ->  (
( A G ( B F z ) )  =  ( ( A G B ) H ( A G z ) )  <->  ( A G ( B F C ) )  =  ( ( A G B ) H ( A G C ) ) ) )
187, 12, 17rspc3v 2869 . 2  |-  ( ( A  e.  K  /\  B  e.  S  /\  C  e.  S )  ->  ( A. x  e.  K  A. y  e.  S  A. z  e.  S  ( x G ( y F z ) )  =  ( ( x G y ) H ( x G z ) )  ->  ( A G ( B F C ) )  =  ( ( A G B ) H ( A G C ) ) ) )
192, 18mpan9 281 1  |-  ( (
ph  /\  ( A  e.  K  /\  B  e.  S  /\  C  e.  S ) )  -> 
( A G ( B F C ) )  =  ( ( A G B ) H ( A G C ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    /\ w3a 979    = wceq 1363    e. wcel 2158   A.wral 2465  (class class class)co 5888
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1457  ax-7 1458  ax-gen 1459  ax-ie1 1503  ax-ie2 1504  ax-8 1514  ax-10 1515  ax-11 1516  ax-i12 1517  ax-bndl 1519  ax-4 1520  ax-17 1536  ax-i9 1540  ax-ial 1544  ax-i5r 1545  ax-ext 2169
This theorem depends on definitions:  df-bi 117  df-3an 981  df-tru 1366  df-nf 1471  df-sb 1773  df-clab 2174  df-cleq 2180  df-clel 2183  df-nfc 2318  df-ral 2470  df-rex 2471  df-v 2751  df-un 3145  df-sn 3610  df-pr 3611  df-op 3613  df-uni 3822  df-br 4016  df-iota 5190  df-fv 5236  df-ov 5891
This theorem is referenced by:  caovdid  6064  caovdi  6068  srgdilem  13278  ringdilem  13321
  Copyright terms: Public domain W3C validator