ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  caovdig Unicode version

Theorem caovdig 6051
Description: Convert an operation distributive law to class notation. (Contributed by NM, 25-Aug-1995.) (Revised by Mario Carneiro, 26-Jul-2014.)
Hypothesis
Ref Expression
caovdig.1  |-  ( (
ph  /\  ( x  e.  K  /\  y  e.  S  /\  z  e.  S ) )  -> 
( x G ( y F z ) )  =  ( ( x G y ) H ( x G z ) ) )
Assertion
Ref Expression
caovdig  |-  ( (
ph  /\  ( A  e.  K  /\  B  e.  S  /\  C  e.  S ) )  -> 
( A G ( B F C ) )  =  ( ( A G B ) H ( A G C ) ) )
Distinct variable groups:    x, y, z, A    x, B, y, z    x, C, y, z    ph, x, y, z   
x, F, y, z   
x, G, y, z   
x, H, y, z   
x, K, y, z   
x, S, y, z

Proof of Theorem caovdig
StepHypRef Expression
1 caovdig.1 . . 3  |-  ( (
ph  /\  ( x  e.  K  /\  y  e.  S  /\  z  e.  S ) )  -> 
( x G ( y F z ) )  =  ( ( x G y ) H ( x G z ) ) )
21ralrimivvva 2560 . 2  |-  ( ph  ->  A. x  e.  K  A. y  e.  S  A. z  e.  S  ( x G ( y F z ) )  =  ( ( x G y ) H ( x G z ) ) )
3 oveq1 5884 . . . 4  |-  ( x  =  A  ->  (
x G ( y F z ) )  =  ( A G ( y F z ) ) )
4 oveq1 5884 . . . . 5  |-  ( x  =  A  ->  (
x G y )  =  ( A G y ) )
5 oveq1 5884 . . . . 5  |-  ( x  =  A  ->  (
x G z )  =  ( A G z ) )
64, 5oveq12d 5895 . . . 4  |-  ( x  =  A  ->  (
( x G y ) H ( x G z ) )  =  ( ( A G y ) H ( A G z ) ) )
73, 6eqeq12d 2192 . . 3  |-  ( x  =  A  ->  (
( x G ( y F z ) )  =  ( ( x G y ) H ( x G z ) )  <->  ( A G ( y F z ) )  =  ( ( A G y ) H ( A G z ) ) ) )
8 oveq1 5884 . . . . 5  |-  ( y  =  B  ->  (
y F z )  =  ( B F z ) )
98oveq2d 5893 . . . 4  |-  ( y  =  B  ->  ( A G ( y F z ) )  =  ( A G ( B F z ) ) )
10 oveq2 5885 . . . . 5  |-  ( y  =  B  ->  ( A G y )  =  ( A G B ) )
1110oveq1d 5892 . . . 4  |-  ( y  =  B  ->  (
( A G y ) H ( A G z ) )  =  ( ( A G B ) H ( A G z ) ) )
129, 11eqeq12d 2192 . . 3  |-  ( y  =  B  ->  (
( A G ( y F z ) )  =  ( ( A G y ) H ( A G z ) )  <->  ( A G ( B F z ) )  =  ( ( A G B ) H ( A G z ) ) ) )
13 oveq2 5885 . . . . 5  |-  ( z  =  C  ->  ( B F z )  =  ( B F C ) )
1413oveq2d 5893 . . . 4  |-  ( z  =  C  ->  ( A G ( B F z ) )  =  ( A G ( B F C ) ) )
15 oveq2 5885 . . . . 5  |-  ( z  =  C  ->  ( A G z )  =  ( A G C ) )
1615oveq2d 5893 . . . 4  |-  ( z  =  C  ->  (
( A G B ) H ( A G z ) )  =  ( ( A G B ) H ( A G C ) ) )
1714, 16eqeq12d 2192 . . 3  |-  ( z  =  C  ->  (
( A G ( B F z ) )  =  ( ( A G B ) H ( A G z ) )  <->  ( A G ( B F C ) )  =  ( ( A G B ) H ( A G C ) ) ) )
187, 12, 17rspc3v 2859 . 2  |-  ( ( A  e.  K  /\  B  e.  S  /\  C  e.  S )  ->  ( A. x  e.  K  A. y  e.  S  A. z  e.  S  ( x G ( y F z ) )  =  ( ( x G y ) H ( x G z ) )  ->  ( A G ( B F C ) )  =  ( ( A G B ) H ( A G C ) ) ) )
192, 18mpan9 281 1  |-  ( (
ph  /\  ( A  e.  K  /\  B  e.  S  /\  C  e.  S ) )  -> 
( A G ( B F C ) )  =  ( ( A G B ) H ( A G C ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    /\ w3a 978    = wceq 1353    e. wcel 2148   A.wral 2455  (class class class)co 5877
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-ext 2159
This theorem depends on definitions:  df-bi 117  df-3an 980  df-tru 1356  df-nf 1461  df-sb 1763  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-ral 2460  df-rex 2461  df-v 2741  df-un 3135  df-sn 3600  df-pr 3601  df-op 3603  df-uni 3812  df-br 4006  df-iota 5180  df-fv 5226  df-ov 5880
This theorem is referenced by:  caovdid  6052  caovdi  6056  srgdilem  13157  ringdilem  13200
  Copyright terms: Public domain W3C validator