| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > caovdi | GIF version | ||
| Description: Convert an operation distributive law to class notation. (Contributed by NM, 25-Aug-1995.) (Revised by Mario Carneiro, 28-Jun-2013.) |
| Ref | Expression |
|---|---|
| caovdi.1 | ⊢ 𝐴 ∈ V |
| caovdi.2 | ⊢ 𝐵 ∈ V |
| caovdi.3 | ⊢ 𝐶 ∈ V |
| caovdi.4 | ⊢ (𝑥𝐺(𝑦𝐹𝑧)) = ((𝑥𝐺𝑦)𝐹(𝑥𝐺𝑧)) |
| Ref | Expression |
|---|---|
| caovdi | ⊢ (𝐴𝐺(𝐵𝐹𝐶)) = ((𝐴𝐺𝐵)𝐹(𝐴𝐺𝐶)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | caovdi.1 | . 2 ⊢ 𝐴 ∈ V | |
| 2 | caovdi.2 | . 2 ⊢ 𝐵 ∈ V | |
| 3 | caovdi.3 | . 2 ⊢ 𝐶 ∈ V | |
| 4 | tru 1377 | . . 3 ⊢ ⊤ | |
| 5 | caovdi.4 | . . . . 5 ⊢ (𝑥𝐺(𝑦𝐹𝑧)) = ((𝑥𝐺𝑦)𝐹(𝑥𝐺𝑧)) | |
| 6 | 5 | a1i 9 | . . . 4 ⊢ ((⊤ ∧ (𝑥 ∈ V ∧ 𝑦 ∈ V ∧ 𝑧 ∈ V)) → (𝑥𝐺(𝑦𝐹𝑧)) = ((𝑥𝐺𝑦)𝐹(𝑥𝐺𝑧))) |
| 7 | 6 | caovdig 6144 | . . 3 ⊢ ((⊤ ∧ (𝐴 ∈ V ∧ 𝐵 ∈ V ∧ 𝐶 ∈ V)) → (𝐴𝐺(𝐵𝐹𝐶)) = ((𝐴𝐺𝐵)𝐹(𝐴𝐺𝐶))) |
| 8 | 4, 7 | mpan 424 | . 2 ⊢ ((𝐴 ∈ V ∧ 𝐵 ∈ V ∧ 𝐶 ∈ V) → (𝐴𝐺(𝐵𝐹𝐶)) = ((𝐴𝐺𝐵)𝐹(𝐴𝐺𝐶))) |
| 9 | 1, 2, 3, 8 | mp3an 1350 | 1 ⊢ (𝐴𝐺(𝐵𝐹𝐶)) = ((𝐴𝐺𝐵)𝐹(𝐴𝐺𝐶)) |
| Colors of variables: wff set class |
| Syntax hints: ∧ wa 104 ∧ w3a 981 = wceq 1373 ⊤wtru 1374 ∈ wcel 2178 Vcvv 2776 (class class class)co 5967 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-ext 2189 |
| This theorem depends on definitions: df-bi 117 df-3an 983 df-tru 1376 df-nf 1485 df-sb 1787 df-clab 2194 df-cleq 2200 df-clel 2203 df-nfc 2339 df-ral 2491 df-rex 2492 df-v 2778 df-un 3178 df-sn 3649 df-pr 3650 df-op 3652 df-uni 3865 df-br 4060 df-iota 5251 df-fv 5298 df-ov 5970 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |