ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  tfrlem3-2d Unicode version

Theorem tfrlem3-2d 6316
Description: Lemma for transfinite recursion which changes a bound variable (Contributed by Jim Kingdon, 2-Jul-2019.)
Hypothesis
Ref Expression
tfrlem3-2d.1  |-  ( ph  ->  A. x ( Fun 
F  /\  ( F `  x )  e.  _V ) )
Assertion
Ref Expression
tfrlem3-2d  |-  ( ph  ->  ( Fun  F  /\  ( F `  g )  e.  _V ) )
Distinct variable group:    x, g, F
Allowed substitution hints:    ph( x, g)

Proof of Theorem tfrlem3-2d
StepHypRef Expression
1 tfrlem3-2d.1 . . 3  |-  ( ph  ->  A. x ( Fun 
F  /\  ( F `  x )  e.  _V ) )
2 fveq2 5517 . . . . . 6  |-  ( x  =  g  ->  ( F `  x )  =  ( F `  g ) )
32eleq1d 2246 . . . . 5  |-  ( x  =  g  ->  (
( F `  x
)  e.  _V  <->  ( F `  g )  e.  _V ) )
43anbi2d 464 . . . 4  |-  ( x  =  g  ->  (
( Fun  F  /\  ( F `  x )  e.  _V )  <->  ( Fun  F  /\  ( F `  g )  e.  _V ) ) )
54cbvalv 1917 . . 3  |-  ( A. x ( Fun  F  /\  ( F `  x
)  e.  _V )  <->  A. g ( Fun  F  /\  ( F `  g
)  e.  _V )
)
61, 5sylib 122 . 2  |-  ( ph  ->  A. g ( Fun 
F  /\  ( F `  g )  e.  _V ) )
7619.21bi 1558 1  |-  ( ph  ->  ( Fun  F  /\  ( F `  g )  e.  _V ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104   A.wal 1351    e. wcel 2148   _Vcvv 2739   Fun wfun 5212   ` cfv 5218
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-ext 2159
This theorem depends on definitions:  df-bi 117  df-3an 980  df-tru 1356  df-nf 1461  df-sb 1763  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-rex 2461  df-v 2741  df-un 3135  df-sn 3600  df-pr 3601  df-op 3603  df-uni 3812  df-br 4006  df-iota 5180  df-fv 5226
This theorem is referenced by:  tfrlemisucfn  6328  tfrlemisucaccv  6329  tfrlemibxssdm  6331  tfrlemibfn  6332  tfrlemi14d  6337
  Copyright terms: Public domain W3C validator