Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > tfrlem3-2d | Unicode version |
Description: Lemma for transfinite recursion which changes a bound variable (Contributed by Jim Kingdon, 2-Jul-2019.) |
Ref | Expression |
---|---|
tfrlem3-2d.1 |
Ref | Expression |
---|---|
tfrlem3-2d |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | tfrlem3-2d.1 | . . 3 | |
2 | fveq2 5481 | . . . . . 6 | |
3 | 2 | eleq1d 2233 | . . . . 5 |
4 | 3 | anbi2d 460 | . . . 4 |
5 | 4 | cbvalv 1904 | . . 3 |
6 | 1, 5 | sylib 121 | . 2 |
7 | 6 | 19.21bi 1545 | 1 |
Colors of variables: wff set class |
Syntax hints: wi 4 wa 103 wal 1340 wcel 2135 cvv 2722 wfun 5177 cfv 5183 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 699 ax-5 1434 ax-7 1435 ax-gen 1436 ax-ie1 1480 ax-ie2 1481 ax-8 1491 ax-10 1492 ax-11 1493 ax-i12 1494 ax-bndl 1496 ax-4 1497 ax-17 1513 ax-i9 1517 ax-ial 1521 ax-i5r 1522 ax-ext 2146 |
This theorem depends on definitions: df-bi 116 df-3an 969 df-tru 1345 df-nf 1448 df-sb 1750 df-clab 2151 df-cleq 2157 df-clel 2160 df-nfc 2295 df-rex 2448 df-v 2724 df-un 3116 df-sn 3577 df-pr 3578 df-op 3580 df-uni 3785 df-br 3978 df-iota 5148 df-fv 5191 |
This theorem is referenced by: tfrlemisucfn 6284 tfrlemisucaccv 6285 tfrlemibxssdm 6287 tfrlemibfn 6288 tfrlemi14d 6293 |
Copyright terms: Public domain | W3C validator |