Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > tfrlem3-2d | Unicode version |
Description: Lemma for transfinite recursion which changes a bound variable (Contributed by Jim Kingdon, 2-Jul-2019.) |
Ref | Expression |
---|---|
tfrlem3-2d.1 |
Ref | Expression |
---|---|
tfrlem3-2d |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | tfrlem3-2d.1 | . . 3 | |
2 | fveq2 5486 | . . . . . 6 | |
3 | 2 | eleq1d 2235 | . . . . 5 |
4 | 3 | anbi2d 460 | . . . 4 |
5 | 4 | cbvalv 1905 | . . 3 |
6 | 1, 5 | sylib 121 | . 2 |
7 | 6 | 19.21bi 1546 | 1 |
Colors of variables: wff set class |
Syntax hints: wi 4 wa 103 wal 1341 wcel 2136 cvv 2726 wfun 5182 cfv 5188 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 699 ax-5 1435 ax-7 1436 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-8 1492 ax-10 1493 ax-11 1494 ax-i12 1495 ax-bndl 1497 ax-4 1498 ax-17 1514 ax-i9 1518 ax-ial 1522 ax-i5r 1523 ax-ext 2147 |
This theorem depends on definitions: df-bi 116 df-3an 970 df-tru 1346 df-nf 1449 df-sb 1751 df-clab 2152 df-cleq 2158 df-clel 2161 df-nfc 2297 df-rex 2450 df-v 2728 df-un 3120 df-sn 3582 df-pr 3583 df-op 3585 df-uni 3790 df-br 3983 df-iota 5153 df-fv 5196 |
This theorem is referenced by: tfrlemisucfn 6292 tfrlemisucaccv 6293 tfrlemibxssdm 6295 tfrlemibfn 6296 tfrlemi14d 6301 |
Copyright terms: Public domain | W3C validator |