ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  csbopabg Unicode version

Theorem csbopabg 4122
Description: Move substitution into a class abstraction. (Contributed by NM, 6-Aug-2007.) (Proof shortened by Mario Carneiro, 17-Nov-2016.)
Assertion
Ref Expression
csbopabg  |-  ( A  e.  V  ->  [_ A  /  x ]_ { <. y ,  z >.  |  ph }  =  { <. y ,  z >.  |  [. A  /  x ]. ph }
)
Distinct variable groups:    y, z, A   
x, y, z
Allowed substitution hints:    ph( x, y, z)    A( x)    V( x, y, z)

Proof of Theorem csbopabg
Dummy variable  w is distinct from all other variables.
StepHypRef Expression
1 csbeq1 3096 . . 3  |-  ( w  =  A  ->  [_ w  /  x ]_ { <. y ,  z >.  |  ph }  =  [_ A  /  x ]_ { <. y ,  z >.  |  ph } )
2 dfsbcq2 3001 . . . 4  |-  ( w  =  A  ->  ( [ w  /  x ] ph  <->  [. A  /  x ]. ph ) )
32opabbidv 4110 . . 3  |-  ( w  =  A  ->  { <. y ,  z >.  |  [
w  /  x ] ph }  =  { <. y ,  z >.  |  [. A  /  x ]. ph }
)
41, 3eqeq12d 2220 . 2  |-  ( w  =  A  ->  ( [_ w  /  x ]_ { <. y ,  z
>.  |  ph }  =  { <. y ,  z
>.  |  [ w  /  x ] ph }  <->  [_ A  /  x ]_ { <. y ,  z
>.  |  ph }  =  { <. y ,  z
>.  |  [. A  /  x ]. ph } ) )
5 vex 2775 . . 3  |-  w  e. 
_V
6 nfs1v 1967 . . . 4  |-  F/ x [ w  /  x ] ph
76nfopab 4112 . . 3  |-  F/_ x { <. y ,  z
>.  |  [ w  /  x ] ph }
8 sbequ12 1794 . . . 4  |-  ( x  =  w  ->  ( ph 
<->  [ w  /  x ] ph ) )
98opabbidv 4110 . . 3  |-  ( x  =  w  ->  { <. y ,  z >.  |  ph }  =  { <. y ,  z >.  |  [
w  /  x ] ph } )
105, 7, 9csbief 3138 . 2  |-  [_ w  /  x ]_ { <. y ,  z >.  |  ph }  =  { <. y ,  z >.  |  [
w  /  x ] ph }
114, 10vtoclg 2833 1  |-  ( A  e.  V  ->  [_ A  /  x ]_ { <. y ,  z >.  |  ph }  =  { <. y ,  z >.  |  [. A  /  x ]. ph }
)
Colors of variables: wff set class
Syntax hints:    -> wi 4    = wceq 1373   [wsb 1785    e. wcel 2176   [.wsbc 2998   [_csb 3093   {copab 4104
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 711  ax-5 1470  ax-7 1471  ax-gen 1472  ax-ie1 1516  ax-ie2 1517  ax-8 1527  ax-10 1528  ax-11 1529  ax-i12 1530  ax-bndl 1532  ax-4 1533  ax-17 1549  ax-i9 1553  ax-ial 1557  ax-i5r 1558  ax-ext 2187
This theorem depends on definitions:  df-bi 117  df-3an 983  df-tru 1376  df-nf 1484  df-sb 1786  df-clab 2192  df-cleq 2198  df-clel 2201  df-nfc 2337  df-v 2774  df-sbc 2999  df-csb 3094  df-opab 4106
This theorem is referenced by:  csbcnvg  4862
  Copyright terms: Public domain W3C validator