ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  csbopabg Unicode version

Theorem csbopabg 4083
Description: Move substitution into a class abstraction. (Contributed by NM, 6-Aug-2007.) (Proof shortened by Mario Carneiro, 17-Nov-2016.)
Assertion
Ref Expression
csbopabg  |-  ( A  e.  V  ->  [_ A  /  x ]_ { <. y ,  z >.  |  ph }  =  { <. y ,  z >.  |  [. A  /  x ]. ph }
)
Distinct variable groups:    y, z, A   
x, y, z
Allowed substitution hints:    ph( x, y, z)    A( x)    V( x, y, z)

Proof of Theorem csbopabg
Dummy variable  w is distinct from all other variables.
StepHypRef Expression
1 csbeq1 3062 . . 3  |-  ( w  =  A  ->  [_ w  /  x ]_ { <. y ,  z >.  |  ph }  =  [_ A  /  x ]_ { <. y ,  z >.  |  ph } )
2 dfsbcq2 2967 . . . 4  |-  ( w  =  A  ->  ( [ w  /  x ] ph  <->  [. A  /  x ]. ph ) )
32opabbidv 4071 . . 3  |-  ( w  =  A  ->  { <. y ,  z >.  |  [
w  /  x ] ph }  =  { <. y ,  z >.  |  [. A  /  x ]. ph }
)
41, 3eqeq12d 2192 . 2  |-  ( w  =  A  ->  ( [_ w  /  x ]_ { <. y ,  z
>.  |  ph }  =  { <. y ,  z
>.  |  [ w  /  x ] ph }  <->  [_ A  /  x ]_ { <. y ,  z
>.  |  ph }  =  { <. y ,  z
>.  |  [. A  /  x ]. ph } ) )
5 vex 2742 . . 3  |-  w  e. 
_V
6 nfs1v 1939 . . . 4  |-  F/ x [ w  /  x ] ph
76nfopab 4073 . . 3  |-  F/_ x { <. y ,  z
>.  |  [ w  /  x ] ph }
8 sbequ12 1771 . . . 4  |-  ( x  =  w  ->  ( ph 
<->  [ w  /  x ] ph ) )
98opabbidv 4071 . . 3  |-  ( x  =  w  ->  { <. y ,  z >.  |  ph }  =  { <. y ,  z >.  |  [
w  /  x ] ph } )
105, 7, 9csbief 3103 . 2  |-  [_ w  /  x ]_ { <. y ,  z >.  |  ph }  =  { <. y ,  z >.  |  [
w  /  x ] ph }
114, 10vtoclg 2799 1  |-  ( A  e.  V  ->  [_ A  /  x ]_ { <. y ,  z >.  |  ph }  =  { <. y ,  z >.  |  [. A  /  x ]. ph }
)
Colors of variables: wff set class
Syntax hints:    -> wi 4    = wceq 1353   [wsb 1762    e. wcel 2148   [.wsbc 2964   [_csb 3059   {copab 4065
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-ext 2159
This theorem depends on definitions:  df-bi 117  df-3an 980  df-tru 1356  df-nf 1461  df-sb 1763  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-v 2741  df-sbc 2965  df-csb 3060  df-opab 4067
This theorem is referenced by:  csbcnvg  4813
  Copyright terms: Public domain W3C validator