| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > cbvopab2v | GIF version | ||
| Description: Rule used to change the second bound variable in an ordered pair abstraction, using implicit substitution. (Contributed by NM, 2-Sep-1999.) |
| Ref | Expression |
|---|---|
| cbvopab2v.1 | ⊢ (𝑦 = 𝑧 → (𝜑 ↔ 𝜓)) |
| Ref | Expression |
|---|---|
| cbvopab2v | ⊢ {〈𝑥, 𝑦〉 ∣ 𝜑} = {〈𝑥, 𝑧〉 ∣ 𝜓} |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | opeq2 3858 | . . . . . . 7 ⊢ (𝑦 = 𝑧 → 〈𝑥, 𝑦〉 = 〈𝑥, 𝑧〉) | |
| 2 | 1 | eqeq2d 2241 | . . . . . 6 ⊢ (𝑦 = 𝑧 → (𝑤 = 〈𝑥, 𝑦〉 ↔ 𝑤 = 〈𝑥, 𝑧〉)) |
| 3 | cbvopab2v.1 | . . . . . 6 ⊢ (𝑦 = 𝑧 → (𝜑 ↔ 𝜓)) | |
| 4 | 2, 3 | anbi12d 473 | . . . . 5 ⊢ (𝑦 = 𝑧 → ((𝑤 = 〈𝑥, 𝑦〉 ∧ 𝜑) ↔ (𝑤 = 〈𝑥, 𝑧〉 ∧ 𝜓))) |
| 5 | 4 | cbvexv 1965 | . . . 4 ⊢ (∃𝑦(𝑤 = 〈𝑥, 𝑦〉 ∧ 𝜑) ↔ ∃𝑧(𝑤 = 〈𝑥, 𝑧〉 ∧ 𝜓)) |
| 6 | 5 | exbii 1651 | . . 3 ⊢ (∃𝑥∃𝑦(𝑤 = 〈𝑥, 𝑦〉 ∧ 𝜑) ↔ ∃𝑥∃𝑧(𝑤 = 〈𝑥, 𝑧〉 ∧ 𝜓)) |
| 7 | 6 | abbii 2345 | . 2 ⊢ {𝑤 ∣ ∃𝑥∃𝑦(𝑤 = 〈𝑥, 𝑦〉 ∧ 𝜑)} = {𝑤 ∣ ∃𝑥∃𝑧(𝑤 = 〈𝑥, 𝑧〉 ∧ 𝜓)} |
| 8 | df-opab 4146 | . 2 ⊢ {〈𝑥, 𝑦〉 ∣ 𝜑} = {𝑤 ∣ ∃𝑥∃𝑦(𝑤 = 〈𝑥, 𝑦〉 ∧ 𝜑)} | |
| 9 | df-opab 4146 | . 2 ⊢ {〈𝑥, 𝑧〉 ∣ 𝜓} = {𝑤 ∣ ∃𝑥∃𝑧(𝑤 = 〈𝑥, 𝑧〉 ∧ 𝜓)} | |
| 10 | 7, 8, 9 | 3eqtr4i 2260 | 1 ⊢ {〈𝑥, 𝑦〉 ∣ 𝜑} = {〈𝑥, 𝑧〉 ∣ 𝜓} |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 ↔ wb 105 = wceq 1395 ∃wex 1538 {cab 2215 〈cop 3669 {copab 4144 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-ext 2211 |
| This theorem depends on definitions: df-bi 117 df-3an 1004 df-tru 1398 df-nf 1507 df-sb 1809 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-v 2801 df-un 3201 df-sn 3672 df-pr 3673 df-op 3675 df-opab 4146 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |