ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  cmnmndd Unicode version

Theorem cmnmndd 13677
Description: A commutative monoid is a monoid. (Contributed by SN, 1-Jun-2024.)
Hypothesis
Ref Expression
cmnmndd.1  |-  ( ph  ->  G  e. CMnd )
Assertion
Ref Expression
cmnmndd  |-  ( ph  ->  G  e.  Mnd )

Proof of Theorem cmnmndd
StepHypRef Expression
1 cmnmndd.1 . 2  |-  ( ph  ->  G  e. CMnd )
2 cmnmnd 13670 . 2  |-  ( G  e. CMnd  ->  G  e.  Mnd )
31, 2syl 14 1  |-  ( ph  ->  G  e.  Mnd )
Colors of variables: wff set class
Syntax hints:    -> wi 4    e. wcel 2176   Mndcmnd 13281  CMndccmn 13653
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 711  ax-5 1470  ax-7 1471  ax-gen 1472  ax-ie1 1516  ax-ie2 1517  ax-8 1527  ax-10 1528  ax-11 1529  ax-i12 1530  ax-bndl 1532  ax-4 1533  ax-17 1549  ax-i9 1553  ax-ial 1557  ax-i5r 1558  ax-ext 2187
This theorem depends on definitions:  df-bi 117  df-3an 983  df-tru 1376  df-nf 1484  df-sb 1786  df-clab 2192  df-cleq 2198  df-clel 2201  df-nfc 2337  df-ral 2489  df-rex 2490  df-rab 2493  df-v 2774  df-un 3170  df-sn 3639  df-pr 3640  df-op 3642  df-uni 3851  df-br 4046  df-iota 5233  df-fv 5280  df-ov 5949  df-cmn 13655
This theorem is referenced by:  gsumfzreidx  13706  gsumfzmptfidmadd  13708  gsumfzmhm  13712  gsumfzmhm2  13713  lgseisenlem3  15582  lgseisenlem4  15583
  Copyright terms: Public domain W3C validator