Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > cmnmndd | Unicode version |
Description: A commutative monoid is a monoid. (Contributed by SN, 1-Jun-2024.) |
Ref | Expression |
---|---|
cmnmndd.1 | CMnd |
Ref | Expression |
---|---|
cmnmndd |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cmnmndd.1 | . 2 CMnd | |
2 | cmnmnd 12900 | . 2 CMnd | |
3 | 1, 2 | syl 14 | 1 |
Colors of variables: wff set class |
Syntax hints: wi 4 wcel 2146 cmnd 12682 CMndccmn 12884 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 709 ax-5 1445 ax-7 1446 ax-gen 1447 ax-ie1 1491 ax-ie2 1492 ax-8 1502 ax-10 1503 ax-11 1504 ax-i12 1505 ax-bndl 1507 ax-4 1508 ax-17 1524 ax-i9 1528 ax-ial 1532 ax-i5r 1533 ax-ext 2157 |
This theorem depends on definitions: df-bi 117 df-3an 980 df-tru 1356 df-nf 1459 df-sb 1761 df-clab 2162 df-cleq 2168 df-clel 2171 df-nfc 2306 df-ral 2458 df-rex 2459 df-rab 2462 df-v 2737 df-un 3131 df-sn 3595 df-pr 3596 df-op 3598 df-uni 3806 df-br 3999 df-iota 5170 df-fv 5216 df-ov 5868 df-cmn 12886 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |