ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  cmnmndd Unicode version

Theorem cmnmndd 13845
Description: A commutative monoid is a monoid. (Contributed by SN, 1-Jun-2024.)
Hypothesis
Ref Expression
cmnmndd.1  |-  ( ph  ->  G  e. CMnd )
Assertion
Ref Expression
cmnmndd  |-  ( ph  ->  G  e.  Mnd )

Proof of Theorem cmnmndd
StepHypRef Expression
1 cmnmndd.1 . 2  |-  ( ph  ->  G  e. CMnd )
2 cmnmnd 13838 . 2  |-  ( G  e. CMnd  ->  G  e.  Mnd )
31, 2syl 14 1  |-  ( ph  ->  G  e.  Mnd )
Colors of variables: wff set class
Syntax hints:    -> wi 4    e. wcel 2200   Mndcmnd 13449  CMndccmn 13821
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-ext 2211
This theorem depends on definitions:  df-bi 117  df-3an 1004  df-tru 1398  df-nf 1507  df-sb 1809  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ral 2513  df-rex 2514  df-rab 2517  df-v 2801  df-un 3201  df-sn 3672  df-pr 3673  df-op 3675  df-uni 3889  df-br 4084  df-iota 5278  df-fv 5326  df-ov 6004  df-cmn 13823
This theorem is referenced by:  gsumfzreidx  13874  gsumfzmptfidmadd  13876  gsumfzmhm  13880  gsumfzmhm2  13881  lgseisenlem3  15751  lgseisenlem4  15752
  Copyright terms: Public domain W3C validator