ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  cmnmndd Unicode version

Theorem cmnmndd 13414
Description: A commutative monoid is a monoid. (Contributed by SN, 1-Jun-2024.)
Hypothesis
Ref Expression
cmnmndd.1  |-  ( ph  ->  G  e. CMnd )
Assertion
Ref Expression
cmnmndd  |-  ( ph  ->  G  e.  Mnd )

Proof of Theorem cmnmndd
StepHypRef Expression
1 cmnmndd.1 . 2  |-  ( ph  ->  G  e. CMnd )
2 cmnmnd 13407 . 2  |-  ( G  e. CMnd  ->  G  e.  Mnd )
31, 2syl 14 1  |-  ( ph  ->  G  e.  Mnd )
Colors of variables: wff set class
Syntax hints:    -> wi 4    e. wcel 2167   Mndcmnd 13033  CMndccmn 13390
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-ext 2178
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-nf 1475  df-sb 1777  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ral 2480  df-rex 2481  df-rab 2484  df-v 2765  df-un 3161  df-sn 3628  df-pr 3629  df-op 3631  df-uni 3840  df-br 4034  df-iota 5219  df-fv 5266  df-ov 5925  df-cmn 13392
This theorem is referenced by:  gsumfzreidx  13443  gsumfzmptfidmadd  13445  gsumfzmhm  13449  gsumfzmhm2  13450  lgseisenlem3  15280  lgseisenlem4  15281
  Copyright terms: Public domain W3C validator