ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  cmnmnd Unicode version

Theorem cmnmnd 13670
Description: A commutative monoid is a monoid. (Contributed by Mario Carneiro, 6-Jan-2015.)
Assertion
Ref Expression
cmnmnd  |-  ( G  e. CMnd  ->  G  e.  Mnd )

Proof of Theorem cmnmnd
Dummy variables  x  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqid 2205 . . 3  |-  ( Base `  G )  =  (
Base `  G )
2 eqid 2205 . . 3  |-  ( +g  `  G )  =  ( +g  `  G )
31, 2iscmn 13662 . 2  |-  ( G  e. CMnd 
<->  ( G  e.  Mnd  /\ 
A. x  e.  (
Base `  G ) A. y  e.  ( Base `  G ) ( x ( +g  `  G
) y )  =  ( y ( +g  `  G ) x ) ) )
43simplbi 274 1  |-  ( G  e. CMnd  ->  G  e.  Mnd )
Colors of variables: wff set class
Syntax hints:    -> wi 4    = wceq 1373    e. wcel 2176   A.wral 2484   ` cfv 5272  (class class class)co 5946   Basecbs 12865   +g cplusg 12942   Mndcmnd 13281  CMndccmn 13653
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 711  ax-5 1470  ax-7 1471  ax-gen 1472  ax-ie1 1516  ax-ie2 1517  ax-8 1527  ax-10 1528  ax-11 1529  ax-i12 1530  ax-bndl 1532  ax-4 1533  ax-17 1549  ax-i9 1553  ax-ial 1557  ax-i5r 1558  ax-ext 2187
This theorem depends on definitions:  df-bi 117  df-3an 983  df-tru 1376  df-nf 1484  df-sb 1786  df-clab 2192  df-cleq 2198  df-clel 2201  df-nfc 2337  df-ral 2489  df-rex 2490  df-rab 2493  df-v 2774  df-un 3170  df-sn 3639  df-pr 3640  df-op 3642  df-uni 3851  df-br 4046  df-iota 5233  df-fv 5280  df-ov 5949  df-cmn 13655
This theorem is referenced by:  cmn32  13673  cmn4  13674  cmn12  13675  cmnmndd  13677  rinvmod  13678  ghmcmn  13696  srgmnd  13762
  Copyright terms: Public domain W3C validator