ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  cmnmnd Unicode version

Theorem cmnmnd 13838
Description: A commutative monoid is a monoid. (Contributed by Mario Carneiro, 6-Jan-2015.)
Assertion
Ref Expression
cmnmnd  |-  ( G  e. CMnd  ->  G  e.  Mnd )

Proof of Theorem cmnmnd
Dummy variables  x  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqid 2229 . . 3  |-  ( Base `  G )  =  (
Base `  G )
2 eqid 2229 . . 3  |-  ( +g  `  G )  =  ( +g  `  G )
31, 2iscmn 13830 . 2  |-  ( G  e. CMnd 
<->  ( G  e.  Mnd  /\ 
A. x  e.  (
Base `  G ) A. y  e.  ( Base `  G ) ( x ( +g  `  G
) y )  =  ( y ( +g  `  G ) x ) ) )
43simplbi 274 1  |-  ( G  e. CMnd  ->  G  e.  Mnd )
Colors of variables: wff set class
Syntax hints:    -> wi 4    = wceq 1395    e. wcel 2200   A.wral 2508   ` cfv 5318  (class class class)co 6001   Basecbs 13032   +g cplusg 13110   Mndcmnd 13449  CMndccmn 13821
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-ext 2211
This theorem depends on definitions:  df-bi 117  df-3an 1004  df-tru 1398  df-nf 1507  df-sb 1809  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ral 2513  df-rex 2514  df-rab 2517  df-v 2801  df-un 3201  df-sn 3672  df-pr 3673  df-op 3675  df-uni 3889  df-br 4084  df-iota 5278  df-fv 5326  df-ov 6004  df-cmn 13823
This theorem is referenced by:  cmn32  13841  cmn4  13842  cmn12  13843  cmnmndd  13845  rinvmod  13846  ghmcmn  13864  srgmnd  13930
  Copyright terms: Public domain W3C validator