ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  coeq1 GIF version

Theorem coeq1 4878
Description: Equality theorem for composition of two classes. (Contributed by NM, 3-Jan-1997.)
Assertion
Ref Expression
coeq1 (𝐴 = 𝐵 → (𝐴𝐶) = (𝐵𝐶))

Proof of Theorem coeq1
StepHypRef Expression
1 coss1 4876 . . 3 (𝐴𝐵 → (𝐴𝐶) ⊆ (𝐵𝐶))
2 coss1 4876 . . 3 (𝐵𝐴 → (𝐵𝐶) ⊆ (𝐴𝐶))
31, 2anim12i 338 . 2 ((𝐴𝐵𝐵𝐴) → ((𝐴𝐶) ⊆ (𝐵𝐶) ∧ (𝐵𝐶) ⊆ (𝐴𝐶)))
4 eqss 3239 . 2 (𝐴 = 𝐵 ↔ (𝐴𝐵𝐵𝐴))
5 eqss 3239 . 2 ((𝐴𝐶) = (𝐵𝐶) ↔ ((𝐴𝐶) ⊆ (𝐵𝐶) ∧ (𝐵𝐶) ⊆ (𝐴𝐶)))
63, 4, 53imtr4i 201 1 (𝐴 = 𝐵 → (𝐴𝐶) = (𝐵𝐶))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104   = wceq 1395  wss 3197  ccom 4722
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-ext 2211
This theorem depends on definitions:  df-bi 117  df-nf 1507  df-sb 1809  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-in 3203  df-ss 3210  df-br 4083  df-opab 4145  df-co 4727
This theorem is referenced by:  coeq1i  4880  coeq1d  4882  coi2  5244  relcnvtr  5247  funcoeqres  5602  ereq1  6685  updjud  7245  seqf1oglem2  10737  seqf1og  10738
  Copyright terms: Public domain W3C validator