ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  f1ococnv1 Unicode version

Theorem f1ococnv1 5536
Description: The composition of a one-to-one onto function's converse and itself equals the identity relation restricted to the function's domain. (Contributed by NM, 13-Dec-2003.)
Assertion
Ref Expression
f1ococnv1  |-  ( F : A -1-1-onto-> B  ->  ( `' F  o.  F )  =  (  _I  |`  A ) )

Proof of Theorem f1ococnv1
StepHypRef Expression
1 f1orel 5510 . . . 4  |-  ( F : A -1-1-onto-> B  ->  Rel  F )
2 dfrel2 5121 . . . 4  |-  ( Rel 
F  <->  `' `' F  =  F
)
31, 2sylib 122 . . 3  |-  ( F : A -1-1-onto-> B  ->  `' `' F  =  F )
43coeq2d 4829 . 2  |-  ( F : A -1-1-onto-> B  ->  ( `' F  o.  `' `' F )  =  ( `' F  o.  F
) )
5 f1ocnv 5520 . . 3  |-  ( F : A -1-1-onto-> B  ->  `' F : B -1-1-onto-> A )
6 f1ococnv2 5534 . . 3  |-  ( `' F : B -1-1-onto-> A  -> 
( `' F  o.  `' `' F )  =  (  _I  |`  A )
)
75, 6syl 14 . 2  |-  ( F : A -1-1-onto-> B  ->  ( `' F  o.  `' `' F )  =  (  _I  |`  A )
)
84, 7eqtr3d 2231 1  |-  ( F : A -1-1-onto-> B  ->  ( `' F  o.  F )  =  (  _I  |`  A ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    = wceq 1364    _I cid 4324   `'ccnv 4663    |` cres 4666    o. ccom 4668   Rel wrel 4669   -1-1-onto->wf1o 5258
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-14 2170  ax-ext 2178  ax-sep 4152  ax-pow 4208  ax-pr 4243
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-nf 1475  df-sb 1777  df-eu 2048  df-mo 2049  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ral 2480  df-rex 2481  df-v 2765  df-un 3161  df-in 3163  df-ss 3170  df-pw 3608  df-sn 3629  df-pr 3630  df-op 3632  df-br 4035  df-opab 4096  df-id 4329  df-xp 4670  df-rel 4671  df-cnv 4672  df-co 4673  df-dm 4674  df-rn 4675  df-res 4676  df-fun 5261  df-fn 5262  df-f 5263  df-f1 5264  df-fo 5265  df-f1o 5266
This theorem is referenced by:  f1cocnv1  5537  f1ocnvfv1  5827  fcof1o  5839  mapen  6916  hashfacen  10945
  Copyright terms: Public domain W3C validator