ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  uzind2 Unicode version

Theorem uzind2 9187
Description: Induction on the upper integers that start after an integer  M. The first four hypotheses give us the substitution instances we need; the last two are the basis and the induction step. (Contributed by NM, 25-Jul-2005.)
Hypotheses
Ref Expression
uzind2.1  |-  ( j  =  ( M  + 
1 )  ->  ( ph 
<->  ps ) )
uzind2.2  |-  ( j  =  k  ->  ( ph 
<->  ch ) )
uzind2.3  |-  ( j  =  ( k  +  1 )  ->  ( ph 
<->  th ) )
uzind2.4  |-  ( j  =  N  ->  ( ph 
<->  ta ) )
uzind2.5  |-  ( M  e.  ZZ  ->  ps )
uzind2.6  |-  ( ( M  e.  ZZ  /\  k  e.  ZZ  /\  M  <  k )  ->  ( ch  ->  th ) )
Assertion
Ref Expression
uzind2  |-  ( ( M  e.  ZZ  /\  N  e.  ZZ  /\  M  <  N )  ->  ta )
Distinct variable groups:    j, N    ps, j    ch, j    th, j    ta, j    ph, k    j, k, M
Allowed substitution hints:    ph( j)    ps( k)    ch( k)    th( k)    ta( k)    N( k)

Proof of Theorem uzind2
StepHypRef Expression
1 zltp1le 9132 . . 3  |-  ( ( M  e.  ZZ  /\  N  e.  ZZ )  ->  ( M  <  N  <->  ( M  +  1 )  <_  N ) )
2 peano2z 9114 . . . . . . 7  |-  ( M  e.  ZZ  ->  ( M  +  1 )  e.  ZZ )
3 uzind2.1 . . . . . . . . . 10  |-  ( j  =  ( M  + 
1 )  ->  ( ph 
<->  ps ) )
43imbi2d 229 . . . . . . . . 9  |-  ( j  =  ( M  + 
1 )  ->  (
( M  e.  ZZ  ->  ph )  <->  ( M  e.  ZZ  ->  ps )
) )
5 uzind2.2 . . . . . . . . . 10  |-  ( j  =  k  ->  ( ph 
<->  ch ) )
65imbi2d 229 . . . . . . . . 9  |-  ( j  =  k  ->  (
( M  e.  ZZ  ->  ph )  <->  ( M  e.  ZZ  ->  ch )
) )
7 uzind2.3 . . . . . . . . . 10  |-  ( j  =  ( k  +  1 )  ->  ( ph 
<->  th ) )
87imbi2d 229 . . . . . . . . 9  |-  ( j  =  ( k  +  1 )  ->  (
( M  e.  ZZ  ->  ph )  <->  ( M  e.  ZZ  ->  th )
) )
9 uzind2.4 . . . . . . . . . 10  |-  ( j  =  N  ->  ( ph 
<->  ta ) )
109imbi2d 229 . . . . . . . . 9  |-  ( j  =  N  ->  (
( M  e.  ZZ  ->  ph )  <->  ( M  e.  ZZ  ->  ta )
) )
11 uzind2.5 . . . . . . . . . 10  |-  ( M  e.  ZZ  ->  ps )
1211a1i 9 . . . . . . . . 9  |-  ( ( M  +  1 )  e.  ZZ  ->  ( M  e.  ZZ  ->  ps ) )
13 zltp1le 9132 . . . . . . . . . . . . . . 15  |-  ( ( M  e.  ZZ  /\  k  e.  ZZ )  ->  ( M  <  k  <->  ( M  +  1 )  <_  k ) )
14 uzind2.6 . . . . . . . . . . . . . . . 16  |-  ( ( M  e.  ZZ  /\  k  e.  ZZ  /\  M  <  k )  ->  ( ch  ->  th ) )
15143expia 1184 . . . . . . . . . . . . . . 15  |-  ( ( M  e.  ZZ  /\  k  e.  ZZ )  ->  ( M  <  k  ->  ( ch  ->  th )
) )
1613, 15sylbird 169 . . . . . . . . . . . . . 14  |-  ( ( M  e.  ZZ  /\  k  e.  ZZ )  ->  ( ( M  + 
1 )  <_  k  ->  ( ch  ->  th )
) )
1716ex 114 . . . . . . . . . . . . 13  |-  ( M  e.  ZZ  ->  (
k  e.  ZZ  ->  ( ( M  +  1 )  <_  k  ->  ( ch  ->  th )
) ) )
1817com3l 81 . . . . . . . . . . . 12  |-  ( k  e.  ZZ  ->  (
( M  +  1 )  <_  k  ->  ( M  e.  ZZ  ->  ( ch  ->  th )
) ) )
1918imp 123 . . . . . . . . . . 11  |-  ( ( k  e.  ZZ  /\  ( M  +  1
)  <_  k )  ->  ( M  e.  ZZ  ->  ( ch  ->  th )
) )
20193adant1 1000 . . . . . . . . . 10  |-  ( ( ( M  +  1 )  e.  ZZ  /\  k  e.  ZZ  /\  ( M  +  1 )  <_  k )  -> 
( M  e.  ZZ  ->  ( ch  ->  th )
) )
2120a2d 26 . . . . . . . . 9  |-  ( ( ( M  +  1 )  e.  ZZ  /\  k  e.  ZZ  /\  ( M  +  1 )  <_  k )  -> 
( ( M  e.  ZZ  ->  ch )  ->  ( M  e.  ZZ  ->  th ) ) )
224, 6, 8, 10, 12, 21uzind 9186 . . . . . . . 8  |-  ( ( ( M  +  1 )  e.  ZZ  /\  N  e.  ZZ  /\  ( M  +  1 )  <_  N )  -> 
( M  e.  ZZ  ->  ta ) )
23223exp 1181 . . . . . . 7  |-  ( ( M  +  1 )  e.  ZZ  ->  ( N  e.  ZZ  ->  ( ( M  +  1 )  <_  N  ->  ( M  e.  ZZ  ->  ta ) ) ) )
242, 23syl 14 . . . . . 6  |-  ( M  e.  ZZ  ->  ( N  e.  ZZ  ->  ( ( M  +  1 )  <_  N  ->  ( M  e.  ZZ  ->  ta ) ) ) )
2524com34 83 . . . . 5  |-  ( M  e.  ZZ  ->  ( N  e.  ZZ  ->  ( M  e.  ZZ  ->  ( ( M  +  1 )  <_  N  ->  ta ) ) ) )
2625pm2.43a 51 . . . 4  |-  ( M  e.  ZZ  ->  ( N  e.  ZZ  ->  ( ( M  +  1 )  <_  N  ->  ta ) ) )
2726imp 123 . . 3  |-  ( ( M  e.  ZZ  /\  N  e.  ZZ )  ->  ( ( M  + 
1 )  <_  N  ->  ta ) )
281, 27sylbid 149 . 2  |-  ( ( M  e.  ZZ  /\  N  e.  ZZ )  ->  ( M  <  N  ->  ta ) )
29283impia 1179 1  |-  ( ( M  e.  ZZ  /\  N  e.  ZZ  /\  M  <  N )  ->  ta )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103    <-> wb 104    /\ w3a 963    = wceq 1332    e. wcel 1481   class class class wbr 3937  (class class class)co 5782   1c1 7645    + caddc 7647    < clt 7824    <_ cle 7825   ZZcz 9078
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1424  ax-7 1425  ax-gen 1426  ax-ie1 1470  ax-ie2 1471  ax-8 1483  ax-10 1484  ax-11 1485  ax-i12 1486  ax-bndl 1487  ax-4 1488  ax-13 1492  ax-14 1493  ax-17 1507  ax-i9 1511  ax-ial 1515  ax-i5r 1516  ax-ext 2122  ax-sep 4054  ax-pow 4106  ax-pr 4139  ax-un 4363  ax-setind 4460  ax-cnex 7735  ax-resscn 7736  ax-1cn 7737  ax-1re 7738  ax-icn 7739  ax-addcl 7740  ax-addrcl 7741  ax-mulcl 7742  ax-addcom 7744  ax-addass 7746  ax-distr 7748  ax-i2m1 7749  ax-0lt1 7750  ax-0id 7752  ax-rnegex 7753  ax-cnre 7755  ax-pre-ltirr 7756  ax-pre-ltwlin 7757  ax-pre-lttrn 7758  ax-pre-ltadd 7760
This theorem depends on definitions:  df-bi 116  df-3or 964  df-3an 965  df-tru 1335  df-fal 1338  df-nf 1438  df-sb 1737  df-eu 2003  df-mo 2004  df-clab 2127  df-cleq 2133  df-clel 2136  df-nfc 2271  df-ne 2310  df-nel 2405  df-ral 2422  df-rex 2423  df-reu 2424  df-rab 2426  df-v 2691  df-sbc 2914  df-dif 3078  df-un 3080  df-in 3082  df-ss 3089  df-pw 3517  df-sn 3538  df-pr 3539  df-op 3541  df-uni 3745  df-int 3780  df-br 3938  df-opab 3998  df-id 4223  df-xp 4553  df-rel 4554  df-cnv 4555  df-co 4556  df-dm 4557  df-iota 5096  df-fun 5133  df-fv 5139  df-riota 5738  df-ov 5785  df-oprab 5786  df-mpo 5787  df-pnf 7826  df-mnf 7827  df-xr 7828  df-ltxr 7829  df-le 7830  df-sub 7959  df-neg 7960  df-inn 8745  df-n0 9002  df-z 9079
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator