ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  dvdsabseq Unicode version

Theorem dvdsabseq 12029
Description: If two integers divide each other, they must be equal, up to a difference in sign. Theorem 1.1(j) in [ApostolNT] p. 14. (Contributed by Mario Carneiro, 30-May-2014.) (Revised by AV, 7-Aug-2021.)
Assertion
Ref Expression
dvdsabseq  |-  ( ( M  ||  N  /\  N  ||  M )  -> 
( abs `  M
)  =  ( abs `  N ) )

Proof of Theorem dvdsabseq
StepHypRef Expression
1 dvdszrcl 11974 . . 3  |-  ( M 
||  N  ->  ( M  e.  ZZ  /\  N  e.  ZZ ) )
2 simpr 110 . . . . . . 7  |-  ( ( M  ||  N  /\  N  ||  M )  ->  N  ||  M )
3 breq1 4037 . . . . . . . . 9  |-  ( N  =  0  ->  ( N  ||  M  <->  0  ||  M ) )
4 0dvds 11993 . . . . . . . . . . 11  |-  ( M  e.  ZZ  ->  (
0  ||  M  <->  M  = 
0 ) )
54adantr 276 . . . . . . . . . 10  |-  ( ( M  e.  ZZ  /\  N  e.  ZZ )  ->  ( 0  ||  M  <->  M  =  0 ) )
6 zcn 9348 . . . . . . . . . . . . 13  |-  ( M  e.  ZZ  ->  M  e.  CC )
76abs00ad 11247 . . . . . . . . . . . 12  |-  ( M  e.  ZZ  ->  (
( abs `  M
)  =  0  <->  M  =  0 ) )
87bicomd 141 . . . . . . . . . . 11  |-  ( M  e.  ZZ  ->  ( M  =  0  <->  ( abs `  M )  =  0 ) )
98adantr 276 . . . . . . . . . 10  |-  ( ( M  e.  ZZ  /\  N  e.  ZZ )  ->  ( M  =  0  <-> 
( abs `  M
)  =  0 ) )
105, 9bitrd 188 . . . . . . . . 9  |-  ( ( M  e.  ZZ  /\  N  e.  ZZ )  ->  ( 0  ||  M  <->  ( abs `  M )  =  0 ) )
113, 10sylan9bb 462 . . . . . . . 8  |-  ( ( N  =  0  /\  ( M  e.  ZZ  /\  N  e.  ZZ ) )  ->  ( N  ||  M  <->  ( abs `  M
)  =  0 ) )
12 fveq2 5561 . . . . . . . . . . 11  |-  ( N  =  0  ->  ( abs `  N )  =  ( abs `  0
) )
13 abs0 11240 . . . . . . . . . . 11  |-  ( abs `  0 )  =  0
1412, 13eqtrdi 2245 . . . . . . . . . 10  |-  ( N  =  0  ->  ( abs `  N )  =  0 )
1514adantr 276 . . . . . . . . 9  |-  ( ( N  =  0  /\  ( M  e.  ZZ  /\  N  e.  ZZ ) )  ->  ( abs `  N )  =  0 )
1615eqeq2d 2208 . . . . . . . 8  |-  ( ( N  =  0  /\  ( M  e.  ZZ  /\  N  e.  ZZ ) )  ->  ( ( abs `  M )  =  ( abs `  N
)  <->  ( abs `  M
)  =  0 ) )
1711, 16bitr4d 191 . . . . . . 7  |-  ( ( N  =  0  /\  ( M  e.  ZZ  /\  N  e.  ZZ ) )  ->  ( N  ||  M  <->  ( abs `  M
)  =  ( abs `  N ) ) )
182, 17imbitrid 154 . . . . . 6  |-  ( ( N  =  0  /\  ( M  e.  ZZ  /\  N  e.  ZZ ) )  ->  ( ( M  ||  N  /\  N  ||  M )  ->  ( abs `  M )  =  ( abs `  N
) ) )
1918expd 258 . . . . 5  |-  ( ( N  =  0  /\  ( M  e.  ZZ  /\  N  e.  ZZ ) )  ->  ( M  ||  N  ->  ( N  ||  M  ->  ( abs `  M )  =  ( abs `  N ) ) ) )
2019expcom 116 . . . 4  |-  ( ( M  e.  ZZ  /\  N  e.  ZZ )  ->  ( N  =  0  ->  ( M  ||  N  ->  ( N  ||  M  ->  ( abs `  M
)  =  ( abs `  N ) ) ) ) )
21 simprl 529 . . . . . . 7  |-  ( ( -.  N  =  0  /\  ( M  e.  ZZ  /\  N  e.  ZZ ) )  ->  M  e.  ZZ )
22 simpr 110 . . . . . . . 8  |-  ( ( M  e.  ZZ  /\  N  e.  ZZ )  ->  N  e.  ZZ )
2322adantl 277 . . . . . . 7  |-  ( ( -.  N  =  0  /\  ( M  e.  ZZ  /\  N  e.  ZZ ) )  ->  N  e.  ZZ )
24 neqne 2375 . . . . . . . 8  |-  ( -.  N  =  0  ->  N  =/=  0 )
2524adantr 276 . . . . . . 7  |-  ( ( -.  N  =  0  /\  ( M  e.  ZZ  /\  N  e.  ZZ ) )  ->  N  =/=  0 )
26 dvdsleabs2 12028 . . . . . . 7  |-  ( ( M  e.  ZZ  /\  N  e.  ZZ  /\  N  =/=  0 )  ->  ( M  ||  N  ->  ( abs `  M )  <_ 
( abs `  N
) ) )
2721, 23, 25, 26syl3anc 1249 . . . . . 6  |-  ( ( -.  N  =  0  /\  ( M  e.  ZZ  /\  N  e.  ZZ ) )  -> 
( M  ||  N  ->  ( abs `  M
)  <_  ( abs `  N ) ) )
28 simpr 110 . . . . . . . . . . . . 13  |-  ( ( N  ||  M  /\  M  ||  N )  ->  M  ||  N )
29 breq1 4037 . . . . . . . . . . . . . . 15  |-  ( M  =  0  ->  ( M  ||  N  <->  0  ||  N ) )
30 0dvds 11993 . . . . . . . . . . . . . . . . 17  |-  ( N  e.  ZZ  ->  (
0  ||  N  <->  N  = 
0 ) )
31 zcn 9348 . . . . . . . . . . . . . . . . . . 19  |-  ( N  e.  ZZ  ->  N  e.  CC )
3231abs00ad 11247 . . . . . . . . . . . . . . . . . 18  |-  ( N  e.  ZZ  ->  (
( abs `  N
)  =  0  <->  N  =  0 ) )
33 eqcom 2198 . . . . . . . . . . . . . . . . . 18  |-  ( ( abs `  N )  =  0  <->  0  =  ( abs `  N ) )
3432, 33bitr3di 195 . . . . . . . . . . . . . . . . 17  |-  ( N  e.  ZZ  ->  ( N  =  0  <->  0  =  ( abs `  N ) ) )
3530, 34bitrd 188 . . . . . . . . . . . . . . . 16  |-  ( N  e.  ZZ  ->  (
0  ||  N  <->  0  =  ( abs `  N ) ) )
3635adantl 277 . . . . . . . . . . . . . . 15  |-  ( ( M  e.  ZZ  /\  N  e.  ZZ )  ->  ( 0  ||  N  <->  0  =  ( abs `  N
) ) )
3729, 36sylan9bb 462 . . . . . . . . . . . . . 14  |-  ( ( M  =  0  /\  ( M  e.  ZZ  /\  N  e.  ZZ ) )  ->  ( M  ||  N  <->  0  =  ( abs `  N ) ) )
38 fveq2 5561 . . . . . . . . . . . . . . . . 17  |-  ( M  =  0  ->  ( abs `  M )  =  ( abs `  0
) )
3938, 13eqtrdi 2245 . . . . . . . . . . . . . . . 16  |-  ( M  =  0  ->  ( abs `  M )  =  0 )
4039adantr 276 . . . . . . . . . . . . . . 15  |-  ( ( M  =  0  /\  ( M  e.  ZZ  /\  N  e.  ZZ ) )  ->  ( abs `  M )  =  0 )
4140eqeq1d 2205 . . . . . . . . . . . . . 14  |-  ( ( M  =  0  /\  ( M  e.  ZZ  /\  N  e.  ZZ ) )  ->  ( ( abs `  M )  =  ( abs `  N
)  <->  0  =  ( abs `  N ) ) )
4237, 41bitr4d 191 . . . . . . . . . . . . 13  |-  ( ( M  =  0  /\  ( M  e.  ZZ  /\  N  e.  ZZ ) )  ->  ( M  ||  N  <->  ( abs `  M
)  =  ( abs `  N ) ) )
4328, 42imbitrid 154 . . . . . . . . . . . 12  |-  ( ( M  =  0  /\  ( M  e.  ZZ  /\  N  e.  ZZ ) )  ->  ( ( N  ||  M  /\  M  ||  N )  ->  ( abs `  M )  =  ( abs `  N
) ) )
4443a1dd 48 . . . . . . . . . . 11  |-  ( ( M  =  0  /\  ( M  e.  ZZ  /\  N  e.  ZZ ) )  ->  ( ( N  ||  M  /\  M  ||  N )  ->  (
( abs `  M
)  <_  ( abs `  N )  ->  ( abs `  M )  =  ( abs `  N
) ) ) )
4544expcomd 1452 . . . . . . . . . 10  |-  ( ( M  =  0  /\  ( M  e.  ZZ  /\  N  e.  ZZ ) )  ->  ( M  ||  N  ->  ( N  ||  M  ->  ( ( abs `  M )  <_ 
( abs `  N
)  ->  ( abs `  M )  =  ( abs `  N ) ) ) ) )
4645expcom 116 . . . . . . . . 9  |-  ( ( M  e.  ZZ  /\  N  e.  ZZ )  ->  ( M  =  0  ->  ( M  ||  N  ->  ( N  ||  M  ->  ( ( abs `  M )  <_  ( abs `  N )  -> 
( abs `  M
)  =  ( abs `  N ) ) ) ) ) )
4722adantl 277 . . . . . . . . . . . . 13  |-  ( ( -.  M  =  0  /\  ( M  e.  ZZ  /\  N  e.  ZZ ) )  ->  N  e.  ZZ )
48 simprl 529 . . . . . . . . . . . . 13  |-  ( ( -.  M  =  0  /\  ( M  e.  ZZ  /\  N  e.  ZZ ) )  ->  M  e.  ZZ )
49 neqne 2375 . . . . . . . . . . . . . 14  |-  ( -.  M  =  0  ->  M  =/=  0 )
5049adantr 276 . . . . . . . . . . . . 13  |-  ( ( -.  M  =  0  /\  ( M  e.  ZZ  /\  N  e.  ZZ ) )  ->  M  =/=  0 )
51 dvdsleabs2 12028 . . . . . . . . . . . . 13  |-  ( ( N  e.  ZZ  /\  M  e.  ZZ  /\  M  =/=  0 )  ->  ( N  ||  M  ->  ( abs `  N )  <_ 
( abs `  M
) ) )
5247, 48, 50, 51syl3anc 1249 . . . . . . . . . . . 12  |-  ( ( -.  M  =  0  /\  ( M  e.  ZZ  /\  N  e.  ZZ ) )  -> 
( N  ||  M  ->  ( abs `  N
)  <_  ( abs `  M ) ) )
53 eqcom 2198 . . . . . . . . . . . . . . . 16  |-  ( ( abs `  M )  =  ( abs `  N
)  <->  ( abs `  N
)  =  ( abs `  M ) )
5431abscld 11363 . . . . . . . . . . . . . . . . 17  |-  ( N  e.  ZZ  ->  ( abs `  N )  e.  RR )
556abscld 11363 . . . . . . . . . . . . . . . . 17  |-  ( M  e.  ZZ  ->  ( abs `  M )  e.  RR )
56 letri3 8124 . . . . . . . . . . . . . . . . 17  |-  ( ( ( abs `  N
)  e.  RR  /\  ( abs `  M )  e.  RR )  -> 
( ( abs `  N
)  =  ( abs `  M )  <->  ( ( abs `  N )  <_ 
( abs `  M
)  /\  ( abs `  M )  <_  ( abs `  N ) ) ) )
5754, 55, 56syl2anr 290 . . . . . . . . . . . . . . . 16  |-  ( ( M  e.  ZZ  /\  N  e.  ZZ )  ->  ( ( abs `  N
)  =  ( abs `  M )  <->  ( ( abs `  N )  <_ 
( abs `  M
)  /\  ( abs `  M )  <_  ( abs `  N ) ) ) )
5853, 57bitrid 192 . . . . . . . . . . . . . . 15  |-  ( ( M  e.  ZZ  /\  N  e.  ZZ )  ->  ( ( abs `  M
)  =  ( abs `  N )  <->  ( ( abs `  N )  <_ 
( abs `  M
)  /\  ( abs `  M )  <_  ( abs `  N ) ) ) )
5958biimprd 158 . . . . . . . . . . . . . 14  |-  ( ( M  e.  ZZ  /\  N  e.  ZZ )  ->  ( ( ( abs `  N )  <_  ( abs `  M )  /\  ( abs `  M )  <_  ( abs `  N
) )  ->  ( abs `  M )  =  ( abs `  N
) ) )
6059expd 258 . . . . . . . . . . . . 13  |-  ( ( M  e.  ZZ  /\  N  e.  ZZ )  ->  ( ( abs `  N
)  <_  ( abs `  M )  ->  (
( abs `  M
)  <_  ( abs `  N )  ->  ( abs `  M )  =  ( abs `  N
) ) ) )
6160adantl 277 . . . . . . . . . . . 12  |-  ( ( -.  M  =  0  /\  ( M  e.  ZZ  /\  N  e.  ZZ ) )  -> 
( ( abs `  N
)  <_  ( abs `  M )  ->  (
( abs `  M
)  <_  ( abs `  N )  ->  ( abs `  M )  =  ( abs `  N
) ) ) )
6252, 61syld 45 . . . . . . . . . . 11  |-  ( ( -.  M  =  0  /\  ( M  e.  ZZ  /\  N  e.  ZZ ) )  -> 
( N  ||  M  ->  ( ( abs `  M
)  <_  ( abs `  N )  ->  ( abs `  M )  =  ( abs `  N
) ) ) )
6362a1d 22 . . . . . . . . . 10  |-  ( ( -.  M  =  0  /\  ( M  e.  ZZ  /\  N  e.  ZZ ) )  -> 
( M  ||  N  ->  ( N  ||  M  ->  ( ( abs `  M
)  <_  ( abs `  N )  ->  ( abs `  M )  =  ( abs `  N
) ) ) ) )
6463expcom 116 . . . . . . . . 9  |-  ( ( M  e.  ZZ  /\  N  e.  ZZ )  ->  ( -.  M  =  0  ->  ( M  ||  N  ->  ( N  ||  M  ->  ( ( abs `  M )  <_ 
( abs `  N
)  ->  ( abs `  M )  =  ( abs `  N ) ) ) ) ) )
65 0z 9354 . . . . . . . . . . . 12  |-  0  e.  ZZ
66 zdceq 9418 . . . . . . . . . . . 12  |-  ( ( M  e.  ZZ  /\  0  e.  ZZ )  -> DECID  M  =  0 )
6765, 66mpan2 425 . . . . . . . . . . 11  |-  ( M  e.  ZZ  -> DECID  M  =  0
)
68 exmiddc 837 . . . . . . . . . . 11  |-  (DECID  M  =  0  ->  ( M  =  0  \/  -.  M  =  0 ) )
6967, 68syl 14 . . . . . . . . . 10  |-  ( M  e.  ZZ  ->  ( M  =  0  \/  -.  M  =  0
) )
7069adantr 276 . . . . . . . . 9  |-  ( ( M  e.  ZZ  /\  N  e.  ZZ )  ->  ( M  =  0  \/  -.  M  =  0 ) )
7146, 64, 70mpjaod 719 . . . . . . . 8  |-  ( ( M  e.  ZZ  /\  N  e.  ZZ )  ->  ( M  ||  N  ->  ( N  ||  M  ->  ( ( abs `  M
)  <_  ( abs `  N )  ->  ( abs `  M )  =  ( abs `  N
) ) ) ) )
7271com34 83 . . . . . . 7  |-  ( ( M  e.  ZZ  /\  N  e.  ZZ )  ->  ( M  ||  N  ->  ( ( abs `  M
)  <_  ( abs `  N )  ->  ( N  ||  M  ->  ( abs `  M )  =  ( abs `  N
) ) ) ) )
7372adantl 277 . . . . . 6  |-  ( ( -.  N  =  0  /\  ( M  e.  ZZ  /\  N  e.  ZZ ) )  -> 
( M  ||  N  ->  ( ( abs `  M
)  <_  ( abs `  N )  ->  ( N  ||  M  ->  ( abs `  M )  =  ( abs `  N
) ) ) ) )
7427, 73mpdd 41 . . . . 5  |-  ( ( -.  N  =  0  /\  ( M  e.  ZZ  /\  N  e.  ZZ ) )  -> 
( M  ||  N  ->  ( N  ||  M  ->  ( abs `  M
)  =  ( abs `  N ) ) ) )
7574expcom 116 . . . 4  |-  ( ( M  e.  ZZ  /\  N  e.  ZZ )  ->  ( -.  N  =  0  ->  ( M  ||  N  ->  ( N  ||  M  ->  ( abs `  M )  =  ( abs `  N ) ) ) ) )
76 zdceq 9418 . . . . . . 7  |-  ( ( N  e.  ZZ  /\  0  e.  ZZ )  -> DECID  N  =  0 )
7765, 76mpan2 425 . . . . . 6  |-  ( N  e.  ZZ  -> DECID  N  =  0
)
78 exmiddc 837 . . . . . 6  |-  (DECID  N  =  0  ->  ( N  =  0  \/  -.  N  =  0 ) )
7977, 78syl 14 . . . . 5  |-  ( N  e.  ZZ  ->  ( N  =  0  \/  -.  N  =  0
) )
8079adantl 277 . . . 4  |-  ( ( M  e.  ZZ  /\  N  e.  ZZ )  ->  ( N  =  0  \/  -.  N  =  0 ) )
8120, 75, 80mpjaod 719 . . 3  |-  ( ( M  e.  ZZ  /\  N  e.  ZZ )  ->  ( M  ||  N  ->  ( N  ||  M  ->  ( abs `  M
)  =  ( abs `  N ) ) ) )
821, 81mpcom 36 . 2  |-  ( M 
||  N  ->  ( N  ||  M  ->  ( abs `  M )  =  ( abs `  N
) ) )
8382imp 124 1  |-  ( ( M  ||  N  /\  N  ||  M )  -> 
( abs `  M
)  =  ( abs `  N ) )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 104    <-> wb 105    \/ wo 709  DECID wdc 835    = wceq 1364    e. wcel 2167    =/= wne 2367   class class class wbr 4034   ` cfv 5259   RRcr 7895   0cc0 7896    <_ cle 8079   ZZcz 9343   abscabs 11179    || cdvds 11969
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-13 2169  ax-14 2170  ax-ext 2178  ax-coll 4149  ax-sep 4152  ax-nul 4160  ax-pow 4208  ax-pr 4243  ax-un 4469  ax-setind 4574  ax-iinf 4625  ax-cnex 7987  ax-resscn 7988  ax-1cn 7989  ax-1re 7990  ax-icn 7991  ax-addcl 7992  ax-addrcl 7993  ax-mulcl 7994  ax-mulrcl 7995  ax-addcom 7996  ax-mulcom 7997  ax-addass 7998  ax-mulass 7999  ax-distr 8000  ax-i2m1 8001  ax-0lt1 8002  ax-1rid 8003  ax-0id 8004  ax-rnegex 8005  ax-precex 8006  ax-cnre 8007  ax-pre-ltirr 8008  ax-pre-ltwlin 8009  ax-pre-lttrn 8010  ax-pre-apti 8011  ax-pre-ltadd 8012  ax-pre-mulgt0 8013  ax-pre-mulext 8014  ax-arch 8015  ax-caucvg 8016
This theorem depends on definitions:  df-bi 117  df-dc 836  df-3or 981  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1475  df-sb 1777  df-eu 2048  df-mo 2049  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ne 2368  df-nel 2463  df-ral 2480  df-rex 2481  df-reu 2482  df-rmo 2483  df-rab 2484  df-v 2765  df-sbc 2990  df-csb 3085  df-dif 3159  df-un 3161  df-in 3163  df-ss 3170  df-nul 3452  df-if 3563  df-pw 3608  df-sn 3629  df-pr 3630  df-op 3632  df-uni 3841  df-int 3876  df-iun 3919  df-br 4035  df-opab 4096  df-mpt 4097  df-tr 4133  df-id 4329  df-po 4332  df-iso 4333  df-iord 4402  df-on 4404  df-ilim 4405  df-suc 4407  df-iom 4628  df-xp 4670  df-rel 4671  df-cnv 4672  df-co 4673  df-dm 4674  df-rn 4675  df-res 4676  df-ima 4677  df-iota 5220  df-fun 5261  df-fn 5262  df-f 5263  df-f1 5264  df-fo 5265  df-f1o 5266  df-fv 5267  df-riota 5880  df-ov 5928  df-oprab 5929  df-mpo 5930  df-1st 6207  df-2nd 6208  df-recs 6372  df-frec 6458  df-pnf 8080  df-mnf 8081  df-xr 8082  df-ltxr 8083  df-le 8084  df-sub 8216  df-neg 8217  df-reap 8619  df-ap 8626  df-div 8717  df-inn 9008  df-2 9066  df-3 9067  df-4 9068  df-n0 9267  df-z 9344  df-uz 9619  df-q 9711  df-rp 9746  df-seqfrec 10557  df-exp 10648  df-cj 11024  df-re 11025  df-im 11026  df-rsqrt 11180  df-abs 11181  df-dvds 11970
This theorem is referenced by:  dvdseq  12030
  Copyright terms: Public domain W3C validator