ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  dvdsabseq Unicode version

Theorem dvdsabseq 12366
Description: If two integers divide each other, they must be equal, up to a difference in sign. Theorem 1.1(j) in [ApostolNT] p. 14. (Contributed by Mario Carneiro, 30-May-2014.) (Revised by AV, 7-Aug-2021.)
Assertion
Ref Expression
dvdsabseq  |-  ( ( M  ||  N  /\  N  ||  M )  -> 
( abs `  M
)  =  ( abs `  N ) )

Proof of Theorem dvdsabseq
StepHypRef Expression
1 dvdszrcl 12311 . . 3  |-  ( M 
||  N  ->  ( M  e.  ZZ  /\  N  e.  ZZ ) )
2 simpr 110 . . . . . . 7  |-  ( ( M  ||  N  /\  N  ||  M )  ->  N  ||  M )
3 breq1 4086 . . . . . . . . 9  |-  ( N  =  0  ->  ( N  ||  M  <->  0  ||  M ) )
4 0dvds 12330 . . . . . . . . . . 11  |-  ( M  e.  ZZ  ->  (
0  ||  M  <->  M  = 
0 ) )
54adantr 276 . . . . . . . . . 10  |-  ( ( M  e.  ZZ  /\  N  e.  ZZ )  ->  ( 0  ||  M  <->  M  =  0 ) )
6 zcn 9459 . . . . . . . . . . . . 13  |-  ( M  e.  ZZ  ->  M  e.  CC )
76abs00ad 11584 . . . . . . . . . . . 12  |-  ( M  e.  ZZ  ->  (
( abs `  M
)  =  0  <->  M  =  0 ) )
87bicomd 141 . . . . . . . . . . 11  |-  ( M  e.  ZZ  ->  ( M  =  0  <->  ( abs `  M )  =  0 ) )
98adantr 276 . . . . . . . . . 10  |-  ( ( M  e.  ZZ  /\  N  e.  ZZ )  ->  ( M  =  0  <-> 
( abs `  M
)  =  0 ) )
105, 9bitrd 188 . . . . . . . . 9  |-  ( ( M  e.  ZZ  /\  N  e.  ZZ )  ->  ( 0  ||  M  <->  ( abs `  M )  =  0 ) )
113, 10sylan9bb 462 . . . . . . . 8  |-  ( ( N  =  0  /\  ( M  e.  ZZ  /\  N  e.  ZZ ) )  ->  ( N  ||  M  <->  ( abs `  M
)  =  0 ) )
12 fveq2 5629 . . . . . . . . . . 11  |-  ( N  =  0  ->  ( abs `  N )  =  ( abs `  0
) )
13 abs0 11577 . . . . . . . . . . 11  |-  ( abs `  0 )  =  0
1412, 13eqtrdi 2278 . . . . . . . . . 10  |-  ( N  =  0  ->  ( abs `  N )  =  0 )
1514adantr 276 . . . . . . . . 9  |-  ( ( N  =  0  /\  ( M  e.  ZZ  /\  N  e.  ZZ ) )  ->  ( abs `  N )  =  0 )
1615eqeq2d 2241 . . . . . . . 8  |-  ( ( N  =  0  /\  ( M  e.  ZZ  /\  N  e.  ZZ ) )  ->  ( ( abs `  M )  =  ( abs `  N
)  <->  ( abs `  M
)  =  0 ) )
1711, 16bitr4d 191 . . . . . . 7  |-  ( ( N  =  0  /\  ( M  e.  ZZ  /\  N  e.  ZZ ) )  ->  ( N  ||  M  <->  ( abs `  M
)  =  ( abs `  N ) ) )
182, 17imbitrid 154 . . . . . 6  |-  ( ( N  =  0  /\  ( M  e.  ZZ  /\  N  e.  ZZ ) )  ->  ( ( M  ||  N  /\  N  ||  M )  ->  ( abs `  M )  =  ( abs `  N
) ) )
1918expd 258 . . . . 5  |-  ( ( N  =  0  /\  ( M  e.  ZZ  /\  N  e.  ZZ ) )  ->  ( M  ||  N  ->  ( N  ||  M  ->  ( abs `  M )  =  ( abs `  N ) ) ) )
2019expcom 116 . . . 4  |-  ( ( M  e.  ZZ  /\  N  e.  ZZ )  ->  ( N  =  0  ->  ( M  ||  N  ->  ( N  ||  M  ->  ( abs `  M
)  =  ( abs `  N ) ) ) ) )
21 simprl 529 . . . . . . 7  |-  ( ( -.  N  =  0  /\  ( M  e.  ZZ  /\  N  e.  ZZ ) )  ->  M  e.  ZZ )
22 simpr 110 . . . . . . . 8  |-  ( ( M  e.  ZZ  /\  N  e.  ZZ )  ->  N  e.  ZZ )
2322adantl 277 . . . . . . 7  |-  ( ( -.  N  =  0  /\  ( M  e.  ZZ  /\  N  e.  ZZ ) )  ->  N  e.  ZZ )
24 neqne 2408 . . . . . . . 8  |-  ( -.  N  =  0  ->  N  =/=  0 )
2524adantr 276 . . . . . . 7  |-  ( ( -.  N  =  0  /\  ( M  e.  ZZ  /\  N  e.  ZZ ) )  ->  N  =/=  0 )
26 dvdsleabs2 12365 . . . . . . 7  |-  ( ( M  e.  ZZ  /\  N  e.  ZZ  /\  N  =/=  0 )  ->  ( M  ||  N  ->  ( abs `  M )  <_ 
( abs `  N
) ) )
2721, 23, 25, 26syl3anc 1271 . . . . . 6  |-  ( ( -.  N  =  0  /\  ( M  e.  ZZ  /\  N  e.  ZZ ) )  -> 
( M  ||  N  ->  ( abs `  M
)  <_  ( abs `  N ) ) )
28 simpr 110 . . . . . . . . . . . . 13  |-  ( ( N  ||  M  /\  M  ||  N )  ->  M  ||  N )
29 breq1 4086 . . . . . . . . . . . . . . 15  |-  ( M  =  0  ->  ( M  ||  N  <->  0  ||  N ) )
30 0dvds 12330 . . . . . . . . . . . . . . . . 17  |-  ( N  e.  ZZ  ->  (
0  ||  N  <->  N  = 
0 ) )
31 zcn 9459 . . . . . . . . . . . . . . . . . . 19  |-  ( N  e.  ZZ  ->  N  e.  CC )
3231abs00ad 11584 . . . . . . . . . . . . . . . . . 18  |-  ( N  e.  ZZ  ->  (
( abs `  N
)  =  0  <->  N  =  0 ) )
33 eqcom 2231 . . . . . . . . . . . . . . . . . 18  |-  ( ( abs `  N )  =  0  <->  0  =  ( abs `  N ) )
3432, 33bitr3di 195 . . . . . . . . . . . . . . . . 17  |-  ( N  e.  ZZ  ->  ( N  =  0  <->  0  =  ( abs `  N ) ) )
3530, 34bitrd 188 . . . . . . . . . . . . . . . 16  |-  ( N  e.  ZZ  ->  (
0  ||  N  <->  0  =  ( abs `  N ) ) )
3635adantl 277 . . . . . . . . . . . . . . 15  |-  ( ( M  e.  ZZ  /\  N  e.  ZZ )  ->  ( 0  ||  N  <->  0  =  ( abs `  N
) ) )
3729, 36sylan9bb 462 . . . . . . . . . . . . . 14  |-  ( ( M  =  0  /\  ( M  e.  ZZ  /\  N  e.  ZZ ) )  ->  ( M  ||  N  <->  0  =  ( abs `  N ) ) )
38 fveq2 5629 . . . . . . . . . . . . . . . . 17  |-  ( M  =  0  ->  ( abs `  M )  =  ( abs `  0
) )
3938, 13eqtrdi 2278 . . . . . . . . . . . . . . . 16  |-  ( M  =  0  ->  ( abs `  M )  =  0 )
4039adantr 276 . . . . . . . . . . . . . . 15  |-  ( ( M  =  0  /\  ( M  e.  ZZ  /\  N  e.  ZZ ) )  ->  ( abs `  M )  =  0 )
4140eqeq1d 2238 . . . . . . . . . . . . . 14  |-  ( ( M  =  0  /\  ( M  e.  ZZ  /\  N  e.  ZZ ) )  ->  ( ( abs `  M )  =  ( abs `  N
)  <->  0  =  ( abs `  N ) ) )
4237, 41bitr4d 191 . . . . . . . . . . . . 13  |-  ( ( M  =  0  /\  ( M  e.  ZZ  /\  N  e.  ZZ ) )  ->  ( M  ||  N  <->  ( abs `  M
)  =  ( abs `  N ) ) )
4328, 42imbitrid 154 . . . . . . . . . . . 12  |-  ( ( M  =  0  /\  ( M  e.  ZZ  /\  N  e.  ZZ ) )  ->  ( ( N  ||  M  /\  M  ||  N )  ->  ( abs `  M )  =  ( abs `  N
) ) )
4443a1dd 48 . . . . . . . . . . 11  |-  ( ( M  =  0  /\  ( M  e.  ZZ  /\  N  e.  ZZ ) )  ->  ( ( N  ||  M  /\  M  ||  N )  ->  (
( abs `  M
)  <_  ( abs `  N )  ->  ( abs `  M )  =  ( abs `  N
) ) ) )
4544expcomd 1484 . . . . . . . . . 10  |-  ( ( M  =  0  /\  ( M  e.  ZZ  /\  N  e.  ZZ ) )  ->  ( M  ||  N  ->  ( N  ||  M  ->  ( ( abs `  M )  <_ 
( abs `  N
)  ->  ( abs `  M )  =  ( abs `  N ) ) ) ) )
4645expcom 116 . . . . . . . . 9  |-  ( ( M  e.  ZZ  /\  N  e.  ZZ )  ->  ( M  =  0  ->  ( M  ||  N  ->  ( N  ||  M  ->  ( ( abs `  M )  <_  ( abs `  N )  -> 
( abs `  M
)  =  ( abs `  N ) ) ) ) ) )
4722adantl 277 . . . . . . . . . . . . 13  |-  ( ( -.  M  =  0  /\  ( M  e.  ZZ  /\  N  e.  ZZ ) )  ->  N  e.  ZZ )
48 simprl 529 . . . . . . . . . . . . 13  |-  ( ( -.  M  =  0  /\  ( M  e.  ZZ  /\  N  e.  ZZ ) )  ->  M  e.  ZZ )
49 neqne 2408 . . . . . . . . . . . . . 14  |-  ( -.  M  =  0  ->  M  =/=  0 )
5049adantr 276 . . . . . . . . . . . . 13  |-  ( ( -.  M  =  0  /\  ( M  e.  ZZ  /\  N  e.  ZZ ) )  ->  M  =/=  0 )
51 dvdsleabs2 12365 . . . . . . . . . . . . 13  |-  ( ( N  e.  ZZ  /\  M  e.  ZZ  /\  M  =/=  0 )  ->  ( N  ||  M  ->  ( abs `  N )  <_ 
( abs `  M
) ) )
5247, 48, 50, 51syl3anc 1271 . . . . . . . . . . . 12  |-  ( ( -.  M  =  0  /\  ( M  e.  ZZ  /\  N  e.  ZZ ) )  -> 
( N  ||  M  ->  ( abs `  N
)  <_  ( abs `  M ) ) )
53 eqcom 2231 . . . . . . . . . . . . . . . 16  |-  ( ( abs `  M )  =  ( abs `  N
)  <->  ( abs `  N
)  =  ( abs `  M ) )
5431abscld 11700 . . . . . . . . . . . . . . . . 17  |-  ( N  e.  ZZ  ->  ( abs `  N )  e.  RR )
556abscld 11700 . . . . . . . . . . . . . . . . 17  |-  ( M  e.  ZZ  ->  ( abs `  M )  e.  RR )
56 letri3 8235 . . . . . . . . . . . . . . . . 17  |-  ( ( ( abs `  N
)  e.  RR  /\  ( abs `  M )  e.  RR )  -> 
( ( abs `  N
)  =  ( abs `  M )  <->  ( ( abs `  N )  <_ 
( abs `  M
)  /\  ( abs `  M )  <_  ( abs `  N ) ) ) )
5754, 55, 56syl2anr 290 . . . . . . . . . . . . . . . 16  |-  ( ( M  e.  ZZ  /\  N  e.  ZZ )  ->  ( ( abs `  N
)  =  ( abs `  M )  <->  ( ( abs `  N )  <_ 
( abs `  M
)  /\  ( abs `  M )  <_  ( abs `  N ) ) ) )
5853, 57bitrid 192 . . . . . . . . . . . . . . 15  |-  ( ( M  e.  ZZ  /\  N  e.  ZZ )  ->  ( ( abs `  M
)  =  ( abs `  N )  <->  ( ( abs `  N )  <_ 
( abs `  M
)  /\  ( abs `  M )  <_  ( abs `  N ) ) ) )
5958biimprd 158 . . . . . . . . . . . . . 14  |-  ( ( M  e.  ZZ  /\  N  e.  ZZ )  ->  ( ( ( abs `  N )  <_  ( abs `  M )  /\  ( abs `  M )  <_  ( abs `  N
) )  ->  ( abs `  M )  =  ( abs `  N
) ) )
6059expd 258 . . . . . . . . . . . . 13  |-  ( ( M  e.  ZZ  /\  N  e.  ZZ )  ->  ( ( abs `  N
)  <_  ( abs `  M )  ->  (
( abs `  M
)  <_  ( abs `  N )  ->  ( abs `  M )  =  ( abs `  N
) ) ) )
6160adantl 277 . . . . . . . . . . . 12  |-  ( ( -.  M  =  0  /\  ( M  e.  ZZ  /\  N  e.  ZZ ) )  -> 
( ( abs `  N
)  <_  ( abs `  M )  ->  (
( abs `  M
)  <_  ( abs `  N )  ->  ( abs `  M )  =  ( abs `  N
) ) ) )
6252, 61syld 45 . . . . . . . . . . 11  |-  ( ( -.  M  =  0  /\  ( M  e.  ZZ  /\  N  e.  ZZ ) )  -> 
( N  ||  M  ->  ( ( abs `  M
)  <_  ( abs `  N )  ->  ( abs `  M )  =  ( abs `  N
) ) ) )
6362a1d 22 . . . . . . . . . 10  |-  ( ( -.  M  =  0  /\  ( M  e.  ZZ  /\  N  e.  ZZ ) )  -> 
( M  ||  N  ->  ( N  ||  M  ->  ( ( abs `  M
)  <_  ( abs `  N )  ->  ( abs `  M )  =  ( abs `  N
) ) ) ) )
6463expcom 116 . . . . . . . . 9  |-  ( ( M  e.  ZZ  /\  N  e.  ZZ )  ->  ( -.  M  =  0  ->  ( M  ||  N  ->  ( N  ||  M  ->  ( ( abs `  M )  <_ 
( abs `  N
)  ->  ( abs `  M )  =  ( abs `  N ) ) ) ) ) )
65 0z 9465 . . . . . . . . . . . 12  |-  0  e.  ZZ
66 zdceq 9530 . . . . . . . . . . . 12  |-  ( ( M  e.  ZZ  /\  0  e.  ZZ )  -> DECID  M  =  0 )
6765, 66mpan2 425 . . . . . . . . . . 11  |-  ( M  e.  ZZ  -> DECID  M  =  0
)
68 exmiddc 841 . . . . . . . . . . 11  |-  (DECID  M  =  0  ->  ( M  =  0  \/  -.  M  =  0 ) )
6967, 68syl 14 . . . . . . . . . 10  |-  ( M  e.  ZZ  ->  ( M  =  0  \/  -.  M  =  0
) )
7069adantr 276 . . . . . . . . 9  |-  ( ( M  e.  ZZ  /\  N  e.  ZZ )  ->  ( M  =  0  \/  -.  M  =  0 ) )
7146, 64, 70mpjaod 723 . . . . . . . 8  |-  ( ( M  e.  ZZ  /\  N  e.  ZZ )  ->  ( M  ||  N  ->  ( N  ||  M  ->  ( ( abs `  M
)  <_  ( abs `  N )  ->  ( abs `  M )  =  ( abs `  N
) ) ) ) )
7271com34 83 . . . . . . 7  |-  ( ( M  e.  ZZ  /\  N  e.  ZZ )  ->  ( M  ||  N  ->  ( ( abs `  M
)  <_  ( abs `  N )  ->  ( N  ||  M  ->  ( abs `  M )  =  ( abs `  N
) ) ) ) )
7372adantl 277 . . . . . 6  |-  ( ( -.  N  =  0  /\  ( M  e.  ZZ  /\  N  e.  ZZ ) )  -> 
( M  ||  N  ->  ( ( abs `  M
)  <_  ( abs `  N )  ->  ( N  ||  M  ->  ( abs `  M )  =  ( abs `  N
) ) ) ) )
7427, 73mpdd 41 . . . . 5  |-  ( ( -.  N  =  0  /\  ( M  e.  ZZ  /\  N  e.  ZZ ) )  -> 
( M  ||  N  ->  ( N  ||  M  ->  ( abs `  M
)  =  ( abs `  N ) ) ) )
7574expcom 116 . . . 4  |-  ( ( M  e.  ZZ  /\  N  e.  ZZ )  ->  ( -.  N  =  0  ->  ( M  ||  N  ->  ( N  ||  M  ->  ( abs `  M )  =  ( abs `  N ) ) ) ) )
76 zdceq 9530 . . . . . . 7  |-  ( ( N  e.  ZZ  /\  0  e.  ZZ )  -> DECID  N  =  0 )
7765, 76mpan2 425 . . . . . 6  |-  ( N  e.  ZZ  -> DECID  N  =  0
)
78 exmiddc 841 . . . . . 6  |-  (DECID  N  =  0  ->  ( N  =  0  \/  -.  N  =  0 ) )
7977, 78syl 14 . . . . 5  |-  ( N  e.  ZZ  ->  ( N  =  0  \/  -.  N  =  0
) )
8079adantl 277 . . . 4  |-  ( ( M  e.  ZZ  /\  N  e.  ZZ )  ->  ( N  =  0  \/  -.  N  =  0 ) )
8120, 75, 80mpjaod 723 . . 3  |-  ( ( M  e.  ZZ  /\  N  e.  ZZ )  ->  ( M  ||  N  ->  ( N  ||  M  ->  ( abs `  M
)  =  ( abs `  N ) ) ) )
821, 81mpcom 36 . 2  |-  ( M 
||  N  ->  ( N  ||  M  ->  ( abs `  M )  =  ( abs `  N
) ) )
8382imp 124 1  |-  ( ( M  ||  N  /\  N  ||  M )  -> 
( abs `  M
)  =  ( abs `  N ) )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 104    <-> wb 105    \/ wo 713  DECID wdc 839    = wceq 1395    e. wcel 2200    =/= wne 2400   class class class wbr 4083   ` cfv 5318   RRcr 8006   0cc0 8007    <_ cle 8190   ZZcz 9454   abscabs 11516    || cdvds 12306
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 617  ax-in2 618  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-13 2202  ax-14 2203  ax-ext 2211  ax-coll 4199  ax-sep 4202  ax-nul 4210  ax-pow 4258  ax-pr 4293  ax-un 4524  ax-setind 4629  ax-iinf 4680  ax-cnex 8098  ax-resscn 8099  ax-1cn 8100  ax-1re 8101  ax-icn 8102  ax-addcl 8103  ax-addrcl 8104  ax-mulcl 8105  ax-mulrcl 8106  ax-addcom 8107  ax-mulcom 8108  ax-addass 8109  ax-mulass 8110  ax-distr 8111  ax-i2m1 8112  ax-0lt1 8113  ax-1rid 8114  ax-0id 8115  ax-rnegex 8116  ax-precex 8117  ax-cnre 8118  ax-pre-ltirr 8119  ax-pre-ltwlin 8120  ax-pre-lttrn 8121  ax-pre-apti 8122  ax-pre-ltadd 8123  ax-pre-mulgt0 8124  ax-pre-mulext 8125  ax-arch 8126  ax-caucvg 8127
This theorem depends on definitions:  df-bi 117  df-dc 840  df-3or 1003  df-3an 1004  df-tru 1398  df-fal 1401  df-nf 1507  df-sb 1809  df-eu 2080  df-mo 2081  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ne 2401  df-nel 2496  df-ral 2513  df-rex 2514  df-reu 2515  df-rmo 2516  df-rab 2517  df-v 2801  df-sbc 3029  df-csb 3125  df-dif 3199  df-un 3201  df-in 3203  df-ss 3210  df-nul 3492  df-if 3603  df-pw 3651  df-sn 3672  df-pr 3673  df-op 3675  df-uni 3889  df-int 3924  df-iun 3967  df-br 4084  df-opab 4146  df-mpt 4147  df-tr 4183  df-id 4384  df-po 4387  df-iso 4388  df-iord 4457  df-on 4459  df-ilim 4460  df-suc 4462  df-iom 4683  df-xp 4725  df-rel 4726  df-cnv 4727  df-co 4728  df-dm 4729  df-rn 4730  df-res 4731  df-ima 4732  df-iota 5278  df-fun 5320  df-fn 5321  df-f 5322  df-f1 5323  df-fo 5324  df-f1o 5325  df-fv 5326  df-riota 5960  df-ov 6010  df-oprab 6011  df-mpo 6012  df-1st 6292  df-2nd 6293  df-recs 6457  df-frec 6543  df-pnf 8191  df-mnf 8192  df-xr 8193  df-ltxr 8194  df-le 8195  df-sub 8327  df-neg 8328  df-reap 8730  df-ap 8737  df-div 8828  df-inn 9119  df-2 9177  df-3 9178  df-4 9179  df-n0 9378  df-z 9455  df-uz 9731  df-q 9823  df-rp 9858  df-seqfrec 10678  df-exp 10769  df-cj 11361  df-re 11362  df-im 11363  df-rsqrt 11517  df-abs 11518  df-dvds 12307
This theorem is referenced by:  dvdseq  12367
  Copyright terms: Public domain W3C validator