Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > f1ocnv2d | Unicode version |
Description: Describe an implicit one-to-one onto function. (Contributed by Mario Carneiro, 30-Apr-2015.) |
Ref | Expression |
---|---|
f1od.1 | |
f1o2d.2 | |
f1o2d.3 | |
f1o2d.4 |
Ref | Expression |
---|---|
f1ocnv2d |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | f1od.1 | . 2 | |
2 | f1o2d.2 | . 2 | |
3 | f1o2d.3 | . 2 | |
4 | eleq1a 2238 | . . . . . 6 | |
5 | 2, 4 | syl 14 | . . . . 5 |
6 | 5 | impr 377 | . . . 4 |
7 | f1o2d.4 | . . . . . . . 8 | |
8 | 7 | biimpar 295 | . . . . . . 7 |
9 | 8 | exp42 369 | . . . . . 6 |
10 | 9 | com34 83 | . . . . 5 |
11 | 10 | imp32 255 | . . . 4 |
12 | 6, 11 | jcai 309 | . . 3 |
13 | eleq1a 2238 | . . . . . 6 | |
14 | 3, 13 | syl 14 | . . . . 5 |
15 | 14 | impr 377 | . . . 4 |
16 | 7 | biimpa 294 | . . . . . . . 8 |
17 | 16 | exp42 369 | . . . . . . 7 |
18 | 17 | com23 78 | . . . . . 6 |
19 | 18 | com34 83 | . . . . 5 |
20 | 19 | imp32 255 | . . . 4 |
21 | 15, 20 | jcai 309 | . . 3 |
22 | 12, 21 | impbida 586 | . 2 |
23 | 1, 2, 3, 22 | f1ocnvd 6040 | 1 |
Colors of variables: wff set class |
Syntax hints: wi 4 wa 103 wb 104 wceq 1343 wcel 2136 cmpt 4043 ccnv 4603 wf1o 5187 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 699 ax-5 1435 ax-7 1436 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-8 1492 ax-10 1493 ax-11 1494 ax-i12 1495 ax-bndl 1497 ax-4 1498 ax-17 1514 ax-i9 1518 ax-ial 1522 ax-i5r 1523 ax-14 2139 ax-ext 2147 ax-sep 4100 ax-pow 4153 ax-pr 4187 |
This theorem depends on definitions: df-bi 116 df-3an 970 df-tru 1346 df-nf 1449 df-sb 1751 df-eu 2017 df-mo 2018 df-clab 2152 df-cleq 2158 df-clel 2161 df-nfc 2297 df-ral 2449 df-rex 2450 df-v 2728 df-un 3120 df-in 3122 df-ss 3129 df-pw 3561 df-sn 3582 df-pr 3583 df-op 3585 df-br 3983 df-opab 4044 df-mpt 4045 df-id 4271 df-xp 4610 df-rel 4611 df-cnv 4612 df-co 4613 df-dm 4614 df-rn 4615 df-fun 5190 df-fn 5191 df-f 5192 df-f1 5193 df-fo 5194 df-f1o 5195 |
This theorem is referenced by: f1o2d 6043 negf1o 8280 negiso 8850 iccf1o 9940 xrnegiso 11203 txhmeo 12959 |
Copyright terms: Public domain | W3C validator |