Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > f1ocnv2d | Unicode version |
Description: Describe an implicit one-to-one onto function. (Contributed by Mario Carneiro, 30-Apr-2015.) |
Ref | Expression |
---|---|
f1od.1 | |
f1o2d.2 | |
f1o2d.3 | |
f1o2d.4 |
Ref | Expression |
---|---|
f1ocnv2d |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | f1od.1 | . 2 | |
2 | f1o2d.2 | . 2 | |
3 | f1o2d.3 | . 2 | |
4 | eleq1a 2242 | . . . . . 6 | |
5 | 2, 4 | syl 14 | . . . . 5 |
6 | 5 | impr 377 | . . . 4 |
7 | f1o2d.4 | . . . . . . . 8 | |
8 | 7 | biimpar 295 | . . . . . . 7 |
9 | 8 | exp42 369 | . . . . . 6 |
10 | 9 | com34 83 | . . . . 5 |
11 | 10 | imp32 255 | . . . 4 |
12 | 6, 11 | jcai 309 | . . 3 |
13 | eleq1a 2242 | . . . . . 6 | |
14 | 3, 13 | syl 14 | . . . . 5 |
15 | 14 | impr 377 | . . . 4 |
16 | 7 | biimpa 294 | . . . . . . . 8 |
17 | 16 | exp42 369 | . . . . . . 7 |
18 | 17 | com23 78 | . . . . . 6 |
19 | 18 | com34 83 | . . . . 5 |
20 | 19 | imp32 255 | . . . 4 |
21 | 15, 20 | jcai 309 | . . 3 |
22 | 12, 21 | impbida 591 | . 2 |
23 | 1, 2, 3, 22 | f1ocnvd 6051 | 1 |
Colors of variables: wff set class |
Syntax hints: wi 4 wa 103 wb 104 wceq 1348 wcel 2141 cmpt 4050 ccnv 4610 wf1o 5197 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 704 ax-5 1440 ax-7 1441 ax-gen 1442 ax-ie1 1486 ax-ie2 1487 ax-8 1497 ax-10 1498 ax-11 1499 ax-i12 1500 ax-bndl 1502 ax-4 1503 ax-17 1519 ax-i9 1523 ax-ial 1527 ax-i5r 1528 ax-14 2144 ax-ext 2152 ax-sep 4107 ax-pow 4160 ax-pr 4194 |
This theorem depends on definitions: df-bi 116 df-3an 975 df-tru 1351 df-nf 1454 df-sb 1756 df-eu 2022 df-mo 2023 df-clab 2157 df-cleq 2163 df-clel 2166 df-nfc 2301 df-ral 2453 df-rex 2454 df-v 2732 df-un 3125 df-in 3127 df-ss 3134 df-pw 3568 df-sn 3589 df-pr 3590 df-op 3592 df-br 3990 df-opab 4051 df-mpt 4052 df-id 4278 df-xp 4617 df-rel 4618 df-cnv 4619 df-co 4620 df-dm 4621 df-rn 4622 df-fun 5200 df-fn 5201 df-f 5202 df-f1 5203 df-fo 5204 df-f1o 5205 |
This theorem is referenced by: f1o2d 6054 negf1o 8301 negiso 8871 iccf1o 9961 xrnegiso 11225 grpinvcnv 12767 txhmeo 13113 |
Copyright terms: Public domain | W3C validator |