ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  f1ocnv2d Unicode version

Theorem f1ocnv2d 6065
Description: Describe an implicit one-to-one onto function. (Contributed by Mario Carneiro, 30-Apr-2015.)
Hypotheses
Ref Expression
f1od.1  |-  F  =  ( x  e.  A  |->  C )
f1o2d.2  |-  ( (
ph  /\  x  e.  A )  ->  C  e.  B )
f1o2d.3  |-  ( (
ph  /\  y  e.  B )  ->  D  e.  A )
f1o2d.4  |-  ( (
ph  /\  ( x  e.  A  /\  y  e.  B ) )  -> 
( x  =  D  <-> 
y  =  C ) )
Assertion
Ref Expression
f1ocnv2d  |-  ( ph  ->  ( F : A -1-1-onto-> B  /\  `' F  =  (
y  e.  B  |->  D ) ) )
Distinct variable groups:    x, y, A   
x, B, y    y, C    x, D    ph, x, y
Allowed substitution hints:    C( x)    D( y)    F( x, y)

Proof of Theorem f1ocnv2d
StepHypRef Expression
1 f1od.1 . 2  |-  F  =  ( x  e.  A  |->  C )
2 f1o2d.2 . 2  |-  ( (
ph  /\  x  e.  A )  ->  C  e.  B )
3 f1o2d.3 . 2  |-  ( (
ph  /\  y  e.  B )  ->  D  e.  A )
4 eleq1a 2247 . . . . . 6  |-  ( C  e.  B  ->  (
y  =  C  -> 
y  e.  B ) )
52, 4syl 14 . . . . 5  |-  ( (
ph  /\  x  e.  A )  ->  (
y  =  C  -> 
y  e.  B ) )
65impr 379 . . . 4  |-  ( (
ph  /\  ( x  e.  A  /\  y  =  C ) )  -> 
y  e.  B )
7 f1o2d.4 . . . . . . . 8  |-  ( (
ph  /\  ( x  e.  A  /\  y  e.  B ) )  -> 
( x  =  D  <-> 
y  =  C ) )
87biimpar 297 . . . . . . 7  |-  ( ( ( ph  /\  (
x  e.  A  /\  y  e.  B )
)  /\  y  =  C )  ->  x  =  D )
98exp42 371 . . . . . 6  |-  ( ph  ->  ( x  e.  A  ->  ( y  e.  B  ->  ( y  =  C  ->  x  =  D ) ) ) )
109com34 83 . . . . 5  |-  ( ph  ->  ( x  e.  A  ->  ( y  =  C  ->  ( y  e.  B  ->  x  =  D ) ) ) )
1110imp32 257 . . . 4  |-  ( (
ph  /\  ( x  e.  A  /\  y  =  C ) )  -> 
( y  e.  B  ->  x  =  D ) )
126, 11jcai 311 . . 3  |-  ( (
ph  /\  ( x  e.  A  /\  y  =  C ) )  -> 
( y  e.  B  /\  x  =  D
) )
13 eleq1a 2247 . . . . . 6  |-  ( D  e.  A  ->  (
x  =  D  ->  x  e.  A )
)
143, 13syl 14 . . . . 5  |-  ( (
ph  /\  y  e.  B )  ->  (
x  =  D  ->  x  e.  A )
)
1514impr 379 . . . 4  |-  ( (
ph  /\  ( y  e.  B  /\  x  =  D ) )  ->  x  e.  A )
167biimpa 296 . . . . . . . 8  |-  ( ( ( ph  /\  (
x  e.  A  /\  y  e.  B )
)  /\  x  =  D )  ->  y  =  C )
1716exp42 371 . . . . . . 7  |-  ( ph  ->  ( x  e.  A  ->  ( y  e.  B  ->  ( x  =  D  ->  y  =  C ) ) ) )
1817com23 78 . . . . . 6  |-  ( ph  ->  ( y  e.  B  ->  ( x  e.  A  ->  ( x  =  D  ->  y  =  C ) ) ) )
1918com34 83 . . . . 5  |-  ( ph  ->  ( y  e.  B  ->  ( x  =  D  ->  ( x  e.  A  ->  y  =  C ) ) ) )
2019imp32 257 . . . 4  |-  ( (
ph  /\  ( y  e.  B  /\  x  =  D ) )  -> 
( x  e.  A  ->  y  =  C ) )
2115, 20jcai 311 . . 3  |-  ( (
ph  /\  ( y  e.  B  /\  x  =  D ) )  -> 
( x  e.  A  /\  y  =  C
) )
2212, 21impbida 596 . 2  |-  ( ph  ->  ( ( x  e.  A  /\  y  =  C )  <->  ( y  e.  B  /\  x  =  D ) ) )
231, 2, 3, 22f1ocnvd 6063 1  |-  ( ph  ->  ( F : A -1-1-onto-> B  /\  `' F  =  (
y  e.  B  |->  D ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105    = wceq 1353    e. wcel 2146    |-> cmpt 4059   `'ccnv 4619   -1-1-onto->wf1o 5207
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 709  ax-5 1445  ax-7 1446  ax-gen 1447  ax-ie1 1491  ax-ie2 1492  ax-8 1502  ax-10 1503  ax-11 1504  ax-i12 1505  ax-bndl 1507  ax-4 1508  ax-17 1524  ax-i9 1528  ax-ial 1532  ax-i5r 1533  ax-14 2149  ax-ext 2157  ax-sep 4116  ax-pow 4169  ax-pr 4203
This theorem depends on definitions:  df-bi 117  df-3an 980  df-tru 1356  df-nf 1459  df-sb 1761  df-eu 2027  df-mo 2028  df-clab 2162  df-cleq 2168  df-clel 2171  df-nfc 2306  df-ral 2458  df-rex 2459  df-v 2737  df-un 3131  df-in 3133  df-ss 3140  df-pw 3574  df-sn 3595  df-pr 3596  df-op 3598  df-br 3999  df-opab 4060  df-mpt 4061  df-id 4287  df-xp 4626  df-rel 4627  df-cnv 4628  df-co 4629  df-dm 4630  df-rn 4631  df-fun 5210  df-fn 5211  df-f 5212  df-f1 5213  df-fo 5214  df-f1o 5215
This theorem is referenced by:  f1o2d  6066  negf1o  8313  negiso  8883  iccf1o  9973  xrnegiso  11236  grpinvcnv  12797  grplactcnv  12831  txhmeo  13388
  Copyright terms: Public domain W3C validator