Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > f1ocnv2d | Unicode version |
Description: Describe an implicit one-to-one onto function. (Contributed by Mario Carneiro, 30-Apr-2015.) |
Ref | Expression |
---|---|
f1od.1 | |
f1o2d.2 | |
f1o2d.3 | |
f1o2d.4 |
Ref | Expression |
---|---|
f1ocnv2d |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | f1od.1 | . 2 | |
2 | f1o2d.2 | . 2 | |
3 | f1o2d.3 | . 2 | |
4 | eleq1a 2247 | . . . . . 6 | |
5 | 2, 4 | syl 14 | . . . . 5 |
6 | 5 | impr 379 | . . . 4 |
7 | f1o2d.4 | . . . . . . . 8 | |
8 | 7 | biimpar 297 | . . . . . . 7 |
9 | 8 | exp42 371 | . . . . . 6 |
10 | 9 | com34 83 | . . . . 5 |
11 | 10 | imp32 257 | . . . 4 |
12 | 6, 11 | jcai 311 | . . 3 |
13 | eleq1a 2247 | . . . . . 6 | |
14 | 3, 13 | syl 14 | . . . . 5 |
15 | 14 | impr 379 | . . . 4 |
16 | 7 | biimpa 296 | . . . . . . . 8 |
17 | 16 | exp42 371 | . . . . . . 7 |
18 | 17 | com23 78 | . . . . . 6 |
19 | 18 | com34 83 | . . . . 5 |
20 | 19 | imp32 257 | . . . 4 |
21 | 15, 20 | jcai 311 | . . 3 |
22 | 12, 21 | impbida 596 | . 2 |
23 | 1, 2, 3, 22 | f1ocnvd 6063 | 1 |
Colors of variables: wff set class |
Syntax hints: wi 4 wa 104 wb 105 wceq 1353 wcel 2146 cmpt 4059 ccnv 4619 wf1o 5207 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 709 ax-5 1445 ax-7 1446 ax-gen 1447 ax-ie1 1491 ax-ie2 1492 ax-8 1502 ax-10 1503 ax-11 1504 ax-i12 1505 ax-bndl 1507 ax-4 1508 ax-17 1524 ax-i9 1528 ax-ial 1532 ax-i5r 1533 ax-14 2149 ax-ext 2157 ax-sep 4116 ax-pow 4169 ax-pr 4203 |
This theorem depends on definitions: df-bi 117 df-3an 980 df-tru 1356 df-nf 1459 df-sb 1761 df-eu 2027 df-mo 2028 df-clab 2162 df-cleq 2168 df-clel 2171 df-nfc 2306 df-ral 2458 df-rex 2459 df-v 2737 df-un 3131 df-in 3133 df-ss 3140 df-pw 3574 df-sn 3595 df-pr 3596 df-op 3598 df-br 3999 df-opab 4060 df-mpt 4061 df-id 4287 df-xp 4626 df-rel 4627 df-cnv 4628 df-co 4629 df-dm 4630 df-rn 4631 df-fun 5210 df-fn 5211 df-f 5212 df-f1 5213 df-fo 5214 df-f1o 5215 |
This theorem is referenced by: f1o2d 6066 negf1o 8313 negiso 8883 iccf1o 9973 xrnegiso 11236 grpinvcnv 12797 grplactcnv 12831 txhmeo 13388 |
Copyright terms: Public domain | W3C validator |