| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > f1ocnv2d | Unicode version | ||
| Description: Describe an implicit one-to-one onto function. (Contributed by Mario Carneiro, 30-Apr-2015.) |
| Ref | Expression |
|---|---|
| f1od.1 |
|
| f1o2d.2 |
|
| f1o2d.3 |
|
| f1o2d.4 |
|
| Ref | Expression |
|---|---|
| f1ocnv2d |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | f1od.1 |
. 2
| |
| 2 | f1o2d.2 |
. 2
| |
| 3 | f1o2d.3 |
. 2
| |
| 4 | eleq1a 2277 |
. . . . . 6
| |
| 5 | 2, 4 | syl 14 |
. . . . 5
|
| 6 | 5 | impr 379 |
. . . 4
|
| 7 | f1o2d.4 |
. . . . . . . 8
| |
| 8 | 7 | biimpar 297 |
. . . . . . 7
|
| 9 | 8 | exp42 371 |
. . . . . 6
|
| 10 | 9 | com34 83 |
. . . . 5
|
| 11 | 10 | imp32 257 |
. . . 4
|
| 12 | 6, 11 | jcai 311 |
. . 3
|
| 13 | eleq1a 2277 |
. . . . . 6
| |
| 14 | 3, 13 | syl 14 |
. . . . 5
|
| 15 | 14 | impr 379 |
. . . 4
|
| 16 | 7 | biimpa 296 |
. . . . . . . 8
|
| 17 | 16 | exp42 371 |
. . . . . . 7
|
| 18 | 17 | com23 78 |
. . . . . 6
|
| 19 | 18 | com34 83 |
. . . . 5
|
| 20 | 19 | imp32 257 |
. . . 4
|
| 21 | 15, 20 | jcai 311 |
. . 3
|
| 22 | 12, 21 | impbida 596 |
. 2
|
| 23 | 1, 2, 3, 22 | f1ocnvd 6148 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 711 ax-5 1470 ax-7 1471 ax-gen 1472 ax-ie1 1516 ax-ie2 1517 ax-8 1527 ax-10 1528 ax-11 1529 ax-i12 1530 ax-bndl 1532 ax-4 1533 ax-17 1549 ax-i9 1553 ax-ial 1557 ax-i5r 1558 ax-14 2179 ax-ext 2187 ax-sep 4162 ax-pow 4218 ax-pr 4253 |
| This theorem depends on definitions: df-bi 117 df-3an 983 df-tru 1376 df-nf 1484 df-sb 1786 df-eu 2057 df-mo 2058 df-clab 2192 df-cleq 2198 df-clel 2201 df-nfc 2337 df-ral 2489 df-rex 2490 df-v 2774 df-un 3170 df-in 3172 df-ss 3179 df-pw 3618 df-sn 3639 df-pr 3640 df-op 3642 df-br 4045 df-opab 4106 df-mpt 4107 df-id 4340 df-xp 4681 df-rel 4682 df-cnv 4683 df-co 4684 df-dm 4685 df-rn 4686 df-fun 5273 df-fn 5274 df-f 5275 df-f1 5276 df-fo 5277 df-f1o 5278 |
| This theorem is referenced by: f1o2d 6151 negf1o 8454 negiso 9028 iccf1o 10126 xrnegiso 11573 grpinvcnv 13400 grplactcnv 13434 txhmeo 14791 |
| Copyright terms: Public domain | W3C validator |