ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  f1ocnv2d Unicode version

Theorem f1ocnv2d 5781
Description: Describe an implicit one-to-one onto function. (Contributed by Mario Carneiro, 30-Apr-2015.)
Hypotheses
Ref Expression
f1od.1  |-  F  =  ( x  e.  A  |->  C )
f1o2d.2  |-  ( (
ph  /\  x  e.  A )  ->  C  e.  B )
f1o2d.3  |-  ( (
ph  /\  y  e.  B )  ->  D  e.  A )
f1o2d.4  |-  ( (
ph  /\  ( x  e.  A  /\  y  e.  B ) )  -> 
( x  =  D  <-> 
y  =  C ) )
Assertion
Ref Expression
f1ocnv2d  |-  ( ph  ->  ( F : A -1-1-onto-> B  /\  `' F  =  (
y  e.  B  |->  D ) ) )
Distinct variable groups:    x, y, A   
x, B, y    y, C    x, D    ph, x, y
Allowed substitution hints:    C( x)    D( y)    F( x, y)

Proof of Theorem f1ocnv2d
StepHypRef Expression
1 f1od.1 . 2  |-  F  =  ( x  e.  A  |->  C )
2 f1o2d.2 . 2  |-  ( (
ph  /\  x  e.  A )  ->  C  e.  B )
3 f1o2d.3 . 2  |-  ( (
ph  /\  y  e.  B )  ->  D  e.  A )
4 eleq1a 2154 . . . . . 6  |-  ( C  e.  B  ->  (
y  =  C  -> 
y  e.  B ) )
52, 4syl 14 . . . . 5  |-  ( (
ph  /\  x  e.  A )  ->  (
y  =  C  -> 
y  e.  B ) )
65impr 371 . . . 4  |-  ( (
ph  /\  ( x  e.  A  /\  y  =  C ) )  -> 
y  e.  B )
7 f1o2d.4 . . . . . . . 8  |-  ( (
ph  /\  ( x  e.  A  /\  y  e.  B ) )  -> 
( x  =  D  <-> 
y  =  C ) )
87biimpar 291 . . . . . . 7  |-  ( ( ( ph  /\  (
x  e.  A  /\  y  e.  B )
)  /\  y  =  C )  ->  x  =  D )
98exp42 363 . . . . . 6  |-  ( ph  ->  ( x  e.  A  ->  ( y  e.  B  ->  ( y  =  C  ->  x  =  D ) ) ) )
109com34 82 . . . . 5  |-  ( ph  ->  ( x  e.  A  ->  ( y  =  C  ->  ( y  e.  B  ->  x  =  D ) ) ) )
1110imp32 253 . . . 4  |-  ( (
ph  /\  ( x  e.  A  /\  y  =  C ) )  -> 
( y  e.  B  ->  x  =  D ) )
126, 11jcai 304 . . 3  |-  ( (
ph  /\  ( x  e.  A  /\  y  =  C ) )  -> 
( y  e.  B  /\  x  =  D
) )
13 eleq1a 2154 . . . . . 6  |-  ( D  e.  A  ->  (
x  =  D  ->  x  e.  A )
)
143, 13syl 14 . . . . 5  |-  ( (
ph  /\  y  e.  B )  ->  (
x  =  D  ->  x  e.  A )
)
1514impr 371 . . . 4  |-  ( (
ph  /\  ( y  e.  B  /\  x  =  D ) )  ->  x  e.  A )
167biimpa 290 . . . . . . . 8  |-  ( ( ( ph  /\  (
x  e.  A  /\  y  e.  B )
)  /\  x  =  D )  ->  y  =  C )
1716exp42 363 . . . . . . 7  |-  ( ph  ->  ( x  e.  A  ->  ( y  e.  B  ->  ( x  =  D  ->  y  =  C ) ) ) )
1817com23 77 . . . . . 6  |-  ( ph  ->  ( y  e.  B  ->  ( x  e.  A  ->  ( x  =  D  ->  y  =  C ) ) ) )
1918com34 82 . . . . 5  |-  ( ph  ->  ( y  e.  B  ->  ( x  =  D  ->  ( x  e.  A  ->  y  =  C ) ) ) )
2019imp32 253 . . . 4  |-  ( (
ph  /\  ( y  e.  B  /\  x  =  D ) )  -> 
( x  e.  A  ->  y  =  C ) )
2115, 20jcai 304 . . 3  |-  ( (
ph  /\  ( y  e.  B  /\  x  =  D ) )  -> 
( x  e.  A  /\  y  =  C
) )
2212, 21impbida 561 . 2  |-  ( ph  ->  ( ( x  e.  A  /\  y  =  C )  <->  ( y  e.  B  /\  x  =  D ) ) )
231, 2, 3, 22f1ocnvd 5779 1  |-  ( ph  ->  ( F : A -1-1-onto-> B  /\  `' F  =  (
y  e.  B  |->  D ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 102    <-> wb 103    = wceq 1285    e. wcel 1434    |-> cmpt 3865   `'ccnv 4398   -1-1-onto->wf1o 4966
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-io 663  ax-5 1377  ax-7 1378  ax-gen 1379  ax-ie1 1423  ax-ie2 1424  ax-8 1436  ax-10 1437  ax-11 1438  ax-i12 1439  ax-bndl 1440  ax-4 1441  ax-14 1446  ax-17 1460  ax-i9 1464  ax-ial 1468  ax-i5r 1469  ax-ext 2065  ax-sep 3922  ax-pow 3974  ax-pr 3999
This theorem depends on definitions:  df-bi 115  df-3an 922  df-tru 1288  df-nf 1391  df-sb 1688  df-eu 1946  df-mo 1947  df-clab 2070  df-cleq 2076  df-clel 2079  df-nfc 2212  df-ral 2358  df-rex 2359  df-v 2614  df-un 2988  df-in 2990  df-ss 2997  df-pw 3408  df-sn 3428  df-pr 3429  df-op 3431  df-br 3812  df-opab 3866  df-mpt 3867  df-id 4083  df-xp 4405  df-rel 4406  df-cnv 4407  df-co 4408  df-dm 4409  df-rn 4410  df-fun 4969  df-fn 4970  df-f 4971  df-f1 4972  df-fo 4973  df-f1o 4974
This theorem is referenced by:  f1o2d  5782  negf1o  7761  negiso  8308  iccf1o  9314
  Copyright terms: Public domain W3C validator