ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  f1ocnv2d Unicode version

Theorem f1ocnv2d 5926
Description: Describe an implicit one-to-one onto function. (Contributed by Mario Carneiro, 30-Apr-2015.)
Hypotheses
Ref Expression
f1od.1  |-  F  =  ( x  e.  A  |->  C )
f1o2d.2  |-  ( (
ph  /\  x  e.  A )  ->  C  e.  B )
f1o2d.3  |-  ( (
ph  /\  y  e.  B )  ->  D  e.  A )
f1o2d.4  |-  ( (
ph  /\  ( x  e.  A  /\  y  e.  B ) )  -> 
( x  =  D  <-> 
y  =  C ) )
Assertion
Ref Expression
f1ocnv2d  |-  ( ph  ->  ( F : A -1-1-onto-> B  /\  `' F  =  (
y  e.  B  |->  D ) ) )
Distinct variable groups:    x, y, A   
x, B, y    y, C    x, D    ph, x, y
Allowed substitution hints:    C( x)    D( y)    F( x, y)

Proof of Theorem f1ocnv2d
StepHypRef Expression
1 f1od.1 . 2  |-  F  =  ( x  e.  A  |->  C )
2 f1o2d.2 . 2  |-  ( (
ph  /\  x  e.  A )  ->  C  e.  B )
3 f1o2d.3 . 2  |-  ( (
ph  /\  y  e.  B )  ->  D  e.  A )
4 eleq1a 2184 . . . . . 6  |-  ( C  e.  B  ->  (
y  =  C  -> 
y  e.  B ) )
52, 4syl 14 . . . . 5  |-  ( (
ph  /\  x  e.  A )  ->  (
y  =  C  -> 
y  e.  B ) )
65impr 374 . . . 4  |-  ( (
ph  /\  ( x  e.  A  /\  y  =  C ) )  -> 
y  e.  B )
7 f1o2d.4 . . . . . . . 8  |-  ( (
ph  /\  ( x  e.  A  /\  y  e.  B ) )  -> 
( x  =  D  <-> 
y  =  C ) )
87biimpar 293 . . . . . . 7  |-  ( ( ( ph  /\  (
x  e.  A  /\  y  e.  B )
)  /\  y  =  C )  ->  x  =  D )
98exp42 366 . . . . . 6  |-  ( ph  ->  ( x  e.  A  ->  ( y  e.  B  ->  ( y  =  C  ->  x  =  D ) ) ) )
109com34 83 . . . . 5  |-  ( ph  ->  ( x  e.  A  ->  ( y  =  C  ->  ( y  e.  B  ->  x  =  D ) ) ) )
1110imp32 255 . . . 4  |-  ( (
ph  /\  ( x  e.  A  /\  y  =  C ) )  -> 
( y  e.  B  ->  x  =  D ) )
126, 11jcai 307 . . 3  |-  ( (
ph  /\  ( x  e.  A  /\  y  =  C ) )  -> 
( y  e.  B  /\  x  =  D
) )
13 eleq1a 2184 . . . . . 6  |-  ( D  e.  A  ->  (
x  =  D  ->  x  e.  A )
)
143, 13syl 14 . . . . 5  |-  ( (
ph  /\  y  e.  B )  ->  (
x  =  D  ->  x  e.  A )
)
1514impr 374 . . . 4  |-  ( (
ph  /\  ( y  e.  B  /\  x  =  D ) )  ->  x  e.  A )
167biimpa 292 . . . . . . . 8  |-  ( ( ( ph  /\  (
x  e.  A  /\  y  e.  B )
)  /\  x  =  D )  ->  y  =  C )
1716exp42 366 . . . . . . 7  |-  ( ph  ->  ( x  e.  A  ->  ( y  e.  B  ->  ( x  =  D  ->  y  =  C ) ) ) )
1817com23 78 . . . . . 6  |-  ( ph  ->  ( y  e.  B  ->  ( x  e.  A  ->  ( x  =  D  ->  y  =  C ) ) ) )
1918com34 83 . . . . 5  |-  ( ph  ->  ( y  e.  B  ->  ( x  =  D  ->  ( x  e.  A  ->  y  =  C ) ) ) )
2019imp32 255 . . . 4  |-  ( (
ph  /\  ( y  e.  B  /\  x  =  D ) )  -> 
( x  e.  A  ->  y  =  C ) )
2115, 20jcai 307 . . 3  |-  ( (
ph  /\  ( y  e.  B  /\  x  =  D ) )  -> 
( x  e.  A  /\  y  =  C
) )
2212, 21impbida 568 . 2  |-  ( ph  ->  ( ( x  e.  A  /\  y  =  C )  <->  ( y  e.  B  /\  x  =  D ) ) )
231, 2, 3, 22f1ocnvd 5924 1  |-  ( ph  ->  ( F : A -1-1-onto-> B  /\  `' F  =  (
y  e.  B  |->  D ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103    <-> wb 104    = wceq 1312    e. wcel 1461    |-> cmpt 3947   `'ccnv 4496   -1-1-onto->wf1o 5078
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 681  ax-5 1404  ax-7 1405  ax-gen 1406  ax-ie1 1450  ax-ie2 1451  ax-8 1463  ax-10 1464  ax-11 1465  ax-i12 1466  ax-bndl 1467  ax-4 1468  ax-14 1473  ax-17 1487  ax-i9 1491  ax-ial 1495  ax-i5r 1496  ax-ext 2095  ax-sep 4004  ax-pow 4056  ax-pr 4089
This theorem depends on definitions:  df-bi 116  df-3an 945  df-tru 1315  df-nf 1418  df-sb 1717  df-eu 1976  df-mo 1977  df-clab 2100  df-cleq 2106  df-clel 2109  df-nfc 2242  df-ral 2393  df-rex 2394  df-v 2657  df-un 3039  df-in 3041  df-ss 3048  df-pw 3476  df-sn 3497  df-pr 3498  df-op 3500  df-br 3894  df-opab 3948  df-mpt 3949  df-id 4173  df-xp 4503  df-rel 4504  df-cnv 4505  df-co 4506  df-dm 4507  df-rn 4508  df-fun 5081  df-fn 5082  df-f 5083  df-f1 5084  df-fo 5085  df-f1o 5086
This theorem is referenced by:  f1o2d  5927  negf1o  8057  negiso  8617  iccf1o  9674  xrnegiso  10917
  Copyright terms: Public domain W3C validator