ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  genpcuu Unicode version

Theorem genpcuu 7519
Description: Upward closure of an operation on positive reals. (Contributed by Jim Kingdon, 8-Nov-2019.)
Hypotheses
Ref Expression
genpelvl.1  |-  F  =  ( w  e.  P. ,  v  e.  P.  |->  <. { x  e.  Q.  |  E. y  e.  Q.  E. z  e.  Q.  (
y  e.  ( 1st `  w )  /\  z  e.  ( 1st `  v
)  /\  x  =  ( y G z ) ) } ,  { x  e.  Q.  |  E. y  e.  Q.  E. z  e.  Q.  (
y  e.  ( 2nd `  w )  /\  z  e.  ( 2nd `  v
)  /\  x  =  ( y G z ) ) } >. )
genpelvl.2  |-  ( ( y  e.  Q.  /\  z  e.  Q. )  ->  ( y G z )  e.  Q. )
genpcuu.2  |-  ( ( ( ( A  e. 
P.  /\  g  e.  ( 2nd `  A ) )  /\  ( B  e.  P.  /\  h  e.  ( 2nd `  B
) ) )  /\  x  e.  Q. )  ->  ( ( g G h )  <Q  x  ->  x  e.  ( 2nd `  ( A F B ) ) ) )
Assertion
Ref Expression
genpcuu  |-  ( ( A  e.  P.  /\  B  e.  P. )  ->  ( f  e.  ( 2nd `  ( A F B ) )  ->  ( f  <Q  x  ->  x  e.  ( 2nd `  ( A F B ) ) ) ) )
Distinct variable groups:    x, y, z, f, g, h, w, v, A    x, B, y, z, f, g, h, w, v    x, G, y, z, f, g, h, w, v    f, F, g, h
Allowed substitution hints:    F( x, y, z, w, v)

Proof of Theorem genpcuu
StepHypRef Expression
1 ltrelnq 7364 . . . . . . 7  |-  <Q  C_  ( Q.  X.  Q. )
21brel 4679 . . . . . 6  |-  ( f 
<Q  x  ->  ( f  e.  Q.  /\  x  e.  Q. ) )
32simprd 114 . . . . 5  |-  ( f 
<Q  x  ->  x  e. 
Q. )
4 genpelvl.1 . . . . . . . . 9  |-  F  =  ( w  e.  P. ,  v  e.  P.  |->  <. { x  e.  Q.  |  E. y  e.  Q.  E. z  e.  Q.  (
y  e.  ( 1st `  w )  /\  z  e.  ( 1st `  v
)  /\  x  =  ( y G z ) ) } ,  { x  e.  Q.  |  E. y  e.  Q.  E. z  e.  Q.  (
y  e.  ( 2nd `  w )  /\  z  e.  ( 2nd `  v
)  /\  x  =  ( y G z ) ) } >. )
5 genpelvl.2 . . . . . . . . 9  |-  ( ( y  e.  Q.  /\  z  e.  Q. )  ->  ( y G z )  e.  Q. )
64, 5genpelvu 7512 . . . . . . . 8  |-  ( ( A  e.  P.  /\  B  e.  P. )  ->  ( f  e.  ( 2nd `  ( A F B ) )  <->  E. g  e.  ( 2nd `  A ) E. h  e.  ( 2nd `  B ) f  =  ( g G h ) ) )
76adantr 276 . . . . . . 7  |-  ( ( ( A  e.  P.  /\  B  e.  P. )  /\  x  e.  Q. )  ->  ( f  e.  ( 2nd `  ( A F B ) )  <->  E. g  e.  ( 2nd `  A ) E. h  e.  ( 2nd `  B ) f  =  ( g G h ) ) )
8 breq1 4007 . . . . . . . . . . . . 13  |-  ( f  =  ( g G h )  ->  (
f  <Q  x  <->  ( g G h )  <Q  x ) )
98biimpd 144 . . . . . . . . . . . 12  |-  ( f  =  ( g G h )  ->  (
f  <Q  x  ->  (
g G h ) 
<Q  x ) )
10 genpcuu.2 . . . . . . . . . . . 12  |-  ( ( ( ( A  e. 
P.  /\  g  e.  ( 2nd `  A ) )  /\  ( B  e.  P.  /\  h  e.  ( 2nd `  B
) ) )  /\  x  e.  Q. )  ->  ( ( g G h )  <Q  x  ->  x  e.  ( 2nd `  ( A F B ) ) ) )
119, 10sylan9r 410 . . . . . . . . . . 11  |-  ( ( ( ( ( A  e.  P.  /\  g  e.  ( 2nd `  A
) )  /\  ( B  e.  P.  /\  h  e.  ( 2nd `  B
) ) )  /\  x  e.  Q. )  /\  f  =  (
g G h ) )  ->  ( f  <Q  x  ->  x  e.  ( 2nd `  ( A F B ) ) ) )
1211exp31 364 . . . . . . . . . 10  |-  ( ( ( A  e.  P.  /\  g  e.  ( 2nd `  A ) )  /\  ( B  e.  P.  /\  h  e.  ( 2nd `  B ) ) )  ->  ( x  e. 
Q.  ->  ( f  =  ( g G h )  ->  ( f  <Q  x  ->  x  e.  ( 2nd `  ( A F B ) ) ) ) ) )
1312an4s 588 . . . . . . . . 9  |-  ( ( ( A  e.  P.  /\  B  e.  P. )  /\  ( g  e.  ( 2nd `  A )  /\  h  e.  ( 2nd `  B ) ) )  ->  (
x  e.  Q.  ->  ( f  =  ( g G h )  -> 
( f  <Q  x  ->  x  e.  ( 2nd `  ( A F B ) ) ) ) ) )
1413impancom 260 . . . . . . . 8  |-  ( ( ( A  e.  P.  /\  B  e.  P. )  /\  x  e.  Q. )  ->  ( ( g  e.  ( 2nd `  A
)  /\  h  e.  ( 2nd `  B ) )  ->  ( f  =  ( g G h )  ->  (
f  <Q  x  ->  x  e.  ( 2nd `  ( A F B ) ) ) ) ) )
1514rexlimdvv 2601 . . . . . . 7  |-  ( ( ( A  e.  P.  /\  B  e.  P. )  /\  x  e.  Q. )  ->  ( E. g  e.  ( 2nd `  A
) E. h  e.  ( 2nd `  B
) f  =  ( g G h )  ->  ( f  <Q  x  ->  x  e.  ( 2nd `  ( A F B ) ) ) ) )
167, 15sylbid 150 . . . . . 6  |-  ( ( ( A  e.  P.  /\  B  e.  P. )  /\  x  e.  Q. )  ->  ( f  e.  ( 2nd `  ( A F B ) )  ->  ( f  <Q  x  ->  x  e.  ( 2nd `  ( A F B ) ) ) ) )
1716ex 115 . . . . 5  |-  ( ( A  e.  P.  /\  B  e.  P. )  ->  ( x  e.  Q.  ->  ( f  e.  ( 2nd `  ( A F B ) )  ->  ( f  <Q  x  ->  x  e.  ( 2nd `  ( A F B ) ) ) ) ) )
183, 17syl5 32 . . . 4  |-  ( ( A  e.  P.  /\  B  e.  P. )  ->  ( f  <Q  x  ->  ( f  e.  ( 2nd `  ( A F B ) )  ->  ( f  <Q  x  ->  x  e.  ( 2nd `  ( A F B ) ) ) ) ) )
1918com34 83 . . 3  |-  ( ( A  e.  P.  /\  B  e.  P. )  ->  ( f  <Q  x  ->  ( f  <Q  x  ->  ( f  e.  ( 2nd `  ( A F B ) )  ->  x  e.  ( 2nd `  ( A F B ) ) ) ) ) )
2019pm2.43d 50 . 2  |-  ( ( A  e.  P.  /\  B  e.  P. )  ->  ( f  <Q  x  ->  ( f  e.  ( 2nd `  ( A F B ) )  ->  x  e.  ( 2nd `  ( A F B ) ) ) ) )
2120com23 78 1  |-  ( ( A  e.  P.  /\  B  e.  P. )  ->  ( f  e.  ( 2nd `  ( A F B ) )  ->  ( f  <Q  x  ->  x  e.  ( 2nd `  ( A F B ) ) ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105    /\ w3a 978    = wceq 1353    e. wcel 2148   E.wrex 2456   {crab 2459   <.cop 3596   class class class wbr 4004   ` cfv 5217  (class class class)co 5875    e. cmpo 5877   1stc1st 6139   2ndc2nd 6140   Q.cnq 7279    <Q cltq 7284   P.cnp 7290
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 614  ax-in2 615  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-13 2150  ax-14 2151  ax-ext 2159  ax-coll 4119  ax-sep 4122  ax-pow 4175  ax-pr 4210  ax-un 4434  ax-setind 4537  ax-iinf 4588
This theorem depends on definitions:  df-bi 117  df-3an 980  df-tru 1356  df-fal 1359  df-nf 1461  df-sb 1763  df-eu 2029  df-mo 2030  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-ne 2348  df-ral 2460  df-rex 2461  df-reu 2462  df-rab 2464  df-v 2740  df-sbc 2964  df-csb 3059  df-dif 3132  df-un 3134  df-in 3136  df-ss 3143  df-pw 3578  df-sn 3599  df-pr 3600  df-op 3602  df-uni 3811  df-int 3846  df-iun 3889  df-br 4005  df-opab 4066  df-mpt 4067  df-id 4294  df-iom 4591  df-xp 4633  df-rel 4634  df-cnv 4635  df-co 4636  df-dm 4637  df-rn 4638  df-res 4639  df-ima 4640  df-iota 5179  df-fun 5219  df-fn 5220  df-f 5221  df-f1 5222  df-fo 5223  df-f1o 5224  df-fv 5225  df-ov 5878  df-oprab 5879  df-mpo 5880  df-1st 6141  df-2nd 6142  df-qs 6541  df-ni 7303  df-nqqs 7347  df-ltnqqs 7352  df-inp 7465
This theorem is referenced by:  genprndu  7521
  Copyright terms: Public domain W3C validator