ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  genpcuu Unicode version

Theorem genpcuu 7461
Description: Upward closure of an operation on positive reals. (Contributed by Jim Kingdon, 8-Nov-2019.)
Hypotheses
Ref Expression
genpelvl.1  |-  F  =  ( w  e.  P. ,  v  e.  P.  |->  <. { x  e.  Q.  |  E. y  e.  Q.  E. z  e.  Q.  (
y  e.  ( 1st `  w )  /\  z  e.  ( 1st `  v
)  /\  x  =  ( y G z ) ) } ,  { x  e.  Q.  |  E. y  e.  Q.  E. z  e.  Q.  (
y  e.  ( 2nd `  w )  /\  z  e.  ( 2nd `  v
)  /\  x  =  ( y G z ) ) } >. )
genpelvl.2  |-  ( ( y  e.  Q.  /\  z  e.  Q. )  ->  ( y G z )  e.  Q. )
genpcuu.2  |-  ( ( ( ( A  e. 
P.  /\  g  e.  ( 2nd `  A ) )  /\  ( B  e.  P.  /\  h  e.  ( 2nd `  B
) ) )  /\  x  e.  Q. )  ->  ( ( g G h )  <Q  x  ->  x  e.  ( 2nd `  ( A F B ) ) ) )
Assertion
Ref Expression
genpcuu  |-  ( ( A  e.  P.  /\  B  e.  P. )  ->  ( f  e.  ( 2nd `  ( A F B ) )  ->  ( f  <Q  x  ->  x  e.  ( 2nd `  ( A F B ) ) ) ) )
Distinct variable groups:    x, y, z, f, g, h, w, v, A    x, B, y, z, f, g, h, w, v    x, G, y, z, f, g, h, w, v    f, F, g, h
Allowed substitution hints:    F( x, y, z, w, v)

Proof of Theorem genpcuu
StepHypRef Expression
1 ltrelnq 7306 . . . . . . 7  |-  <Q  C_  ( Q.  X.  Q. )
21brel 4656 . . . . . 6  |-  ( f 
<Q  x  ->  ( f  e.  Q.  /\  x  e.  Q. ) )
32simprd 113 . . . . 5  |-  ( f 
<Q  x  ->  x  e. 
Q. )
4 genpelvl.1 . . . . . . . . 9  |-  F  =  ( w  e.  P. ,  v  e.  P.  |->  <. { x  e.  Q.  |  E. y  e.  Q.  E. z  e.  Q.  (
y  e.  ( 1st `  w )  /\  z  e.  ( 1st `  v
)  /\  x  =  ( y G z ) ) } ,  { x  e.  Q.  |  E. y  e.  Q.  E. z  e.  Q.  (
y  e.  ( 2nd `  w )  /\  z  e.  ( 2nd `  v
)  /\  x  =  ( y G z ) ) } >. )
5 genpelvl.2 . . . . . . . . 9  |-  ( ( y  e.  Q.  /\  z  e.  Q. )  ->  ( y G z )  e.  Q. )
64, 5genpelvu 7454 . . . . . . . 8  |-  ( ( A  e.  P.  /\  B  e.  P. )  ->  ( f  e.  ( 2nd `  ( A F B ) )  <->  E. g  e.  ( 2nd `  A ) E. h  e.  ( 2nd `  B ) f  =  ( g G h ) ) )
76adantr 274 . . . . . . 7  |-  ( ( ( A  e.  P.  /\  B  e.  P. )  /\  x  e.  Q. )  ->  ( f  e.  ( 2nd `  ( A F B ) )  <->  E. g  e.  ( 2nd `  A ) E. h  e.  ( 2nd `  B ) f  =  ( g G h ) ) )
8 breq1 3985 . . . . . . . . . . . . 13  |-  ( f  =  ( g G h )  ->  (
f  <Q  x  <->  ( g G h )  <Q  x ) )
98biimpd 143 . . . . . . . . . . . 12  |-  ( f  =  ( g G h )  ->  (
f  <Q  x  ->  (
g G h ) 
<Q  x ) )
10 genpcuu.2 . . . . . . . . . . . 12  |-  ( ( ( ( A  e. 
P.  /\  g  e.  ( 2nd `  A ) )  /\  ( B  e.  P.  /\  h  e.  ( 2nd `  B
) ) )  /\  x  e.  Q. )  ->  ( ( g G h )  <Q  x  ->  x  e.  ( 2nd `  ( A F B ) ) ) )
119, 10sylan9r 408 . . . . . . . . . . 11  |-  ( ( ( ( ( A  e.  P.  /\  g  e.  ( 2nd `  A
) )  /\  ( B  e.  P.  /\  h  e.  ( 2nd `  B
) ) )  /\  x  e.  Q. )  /\  f  =  (
g G h ) )  ->  ( f  <Q  x  ->  x  e.  ( 2nd `  ( A F B ) ) ) )
1211exp31 362 . . . . . . . . . 10  |-  ( ( ( A  e.  P.  /\  g  e.  ( 2nd `  A ) )  /\  ( B  e.  P.  /\  h  e.  ( 2nd `  B ) ) )  ->  ( x  e. 
Q.  ->  ( f  =  ( g G h )  ->  ( f  <Q  x  ->  x  e.  ( 2nd `  ( A F B ) ) ) ) ) )
1312an4s 578 . . . . . . . . 9  |-  ( ( ( A  e.  P.  /\  B  e.  P. )  /\  ( g  e.  ( 2nd `  A )  /\  h  e.  ( 2nd `  B ) ) )  ->  (
x  e.  Q.  ->  ( f  =  ( g G h )  -> 
( f  <Q  x  ->  x  e.  ( 2nd `  ( A F B ) ) ) ) ) )
1413impancom 258 . . . . . . . 8  |-  ( ( ( A  e.  P.  /\  B  e.  P. )  /\  x  e.  Q. )  ->  ( ( g  e.  ( 2nd `  A
)  /\  h  e.  ( 2nd `  B ) )  ->  ( f  =  ( g G h )  ->  (
f  <Q  x  ->  x  e.  ( 2nd `  ( A F B ) ) ) ) ) )
1514rexlimdvv 2590 . . . . . . 7  |-  ( ( ( A  e.  P.  /\  B  e.  P. )  /\  x  e.  Q. )  ->  ( E. g  e.  ( 2nd `  A
) E. h  e.  ( 2nd `  B
) f  =  ( g G h )  ->  ( f  <Q  x  ->  x  e.  ( 2nd `  ( A F B ) ) ) ) )
167, 15sylbid 149 . . . . . 6  |-  ( ( ( A  e.  P.  /\  B  e.  P. )  /\  x  e.  Q. )  ->  ( f  e.  ( 2nd `  ( A F B ) )  ->  ( f  <Q  x  ->  x  e.  ( 2nd `  ( A F B ) ) ) ) )
1716ex 114 . . . . 5  |-  ( ( A  e.  P.  /\  B  e.  P. )  ->  ( x  e.  Q.  ->  ( f  e.  ( 2nd `  ( A F B ) )  ->  ( f  <Q  x  ->  x  e.  ( 2nd `  ( A F B ) ) ) ) ) )
183, 17syl5 32 . . . 4  |-  ( ( A  e.  P.  /\  B  e.  P. )  ->  ( f  <Q  x  ->  ( f  e.  ( 2nd `  ( A F B ) )  ->  ( f  <Q  x  ->  x  e.  ( 2nd `  ( A F B ) ) ) ) ) )
1918com34 83 . . 3  |-  ( ( A  e.  P.  /\  B  e.  P. )  ->  ( f  <Q  x  ->  ( f  <Q  x  ->  ( f  e.  ( 2nd `  ( A F B ) )  ->  x  e.  ( 2nd `  ( A F B ) ) ) ) ) )
2019pm2.43d 50 . 2  |-  ( ( A  e.  P.  /\  B  e.  P. )  ->  ( f  <Q  x  ->  ( f  e.  ( 2nd `  ( A F B ) )  ->  x  e.  ( 2nd `  ( A F B ) ) ) ) )
2120com23 78 1  |-  ( ( A  e.  P.  /\  B  e.  P. )  ->  ( f  e.  ( 2nd `  ( A F B ) )  ->  ( f  <Q  x  ->  x  e.  ( 2nd `  ( A F B ) ) ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103    <-> wb 104    /\ w3a 968    = wceq 1343    e. wcel 2136   E.wrex 2445   {crab 2448   <.cop 3579   class class class wbr 3982   ` cfv 5188  (class class class)co 5842    e. cmpo 5844   1stc1st 6106   2ndc2nd 6107   Q.cnq 7221    <Q cltq 7226   P.cnp 7232
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1435  ax-7 1436  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-10 1493  ax-11 1494  ax-i12 1495  ax-bndl 1497  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522  ax-i5r 1523  ax-13 2138  ax-14 2139  ax-ext 2147  ax-coll 4097  ax-sep 4100  ax-pow 4153  ax-pr 4187  ax-un 4411  ax-setind 4514  ax-iinf 4565
This theorem depends on definitions:  df-bi 116  df-3an 970  df-tru 1346  df-fal 1349  df-nf 1449  df-sb 1751  df-eu 2017  df-mo 2018  df-clab 2152  df-cleq 2158  df-clel 2161  df-nfc 2297  df-ne 2337  df-ral 2449  df-rex 2450  df-reu 2451  df-rab 2453  df-v 2728  df-sbc 2952  df-csb 3046  df-dif 3118  df-un 3120  df-in 3122  df-ss 3129  df-pw 3561  df-sn 3582  df-pr 3583  df-op 3585  df-uni 3790  df-int 3825  df-iun 3868  df-br 3983  df-opab 4044  df-mpt 4045  df-id 4271  df-iom 4568  df-xp 4610  df-rel 4611  df-cnv 4612  df-co 4613  df-dm 4614  df-rn 4615  df-res 4616  df-ima 4617  df-iota 5153  df-fun 5190  df-fn 5191  df-f 5192  df-f1 5193  df-fo 5194  df-f1o 5195  df-fv 5196  df-ov 5845  df-oprab 5846  df-mpo 5847  df-1st 6108  df-2nd 6109  df-qs 6507  df-ni 7245  df-nqqs 7289  df-ltnqqs 7294  df-inp 7407
This theorem is referenced by:  genprndu  7463
  Copyright terms: Public domain W3C validator