ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  genpcuu Unicode version

Theorem genpcuu 7615
Description: Upward closure of an operation on positive reals. (Contributed by Jim Kingdon, 8-Nov-2019.)
Hypotheses
Ref Expression
genpelvl.1  |-  F  =  ( w  e.  P. ,  v  e.  P.  |->  <. { x  e.  Q.  |  E. y  e.  Q.  E. z  e.  Q.  (
y  e.  ( 1st `  w )  /\  z  e.  ( 1st `  v
)  /\  x  =  ( y G z ) ) } ,  { x  e.  Q.  |  E. y  e.  Q.  E. z  e.  Q.  (
y  e.  ( 2nd `  w )  /\  z  e.  ( 2nd `  v
)  /\  x  =  ( y G z ) ) } >. )
genpelvl.2  |-  ( ( y  e.  Q.  /\  z  e.  Q. )  ->  ( y G z )  e.  Q. )
genpcuu.2  |-  ( ( ( ( A  e. 
P.  /\  g  e.  ( 2nd `  A ) )  /\  ( B  e.  P.  /\  h  e.  ( 2nd `  B
) ) )  /\  x  e.  Q. )  ->  ( ( g G h )  <Q  x  ->  x  e.  ( 2nd `  ( A F B ) ) ) )
Assertion
Ref Expression
genpcuu  |-  ( ( A  e.  P.  /\  B  e.  P. )  ->  ( f  e.  ( 2nd `  ( A F B ) )  ->  ( f  <Q  x  ->  x  e.  ( 2nd `  ( A F B ) ) ) ) )
Distinct variable groups:    x, y, z, f, g, h, w, v, A    x, B, y, z, f, g, h, w, v    x, G, y, z, f, g, h, w, v    f, F, g, h
Allowed substitution hints:    F( x, y, z, w, v)

Proof of Theorem genpcuu
StepHypRef Expression
1 ltrelnq 7460 . . . . . . 7  |-  <Q  C_  ( Q.  X.  Q. )
21brel 4725 . . . . . 6  |-  ( f 
<Q  x  ->  ( f  e.  Q.  /\  x  e.  Q. ) )
32simprd 114 . . . . 5  |-  ( f 
<Q  x  ->  x  e. 
Q. )
4 genpelvl.1 . . . . . . . . 9  |-  F  =  ( w  e.  P. ,  v  e.  P.  |->  <. { x  e.  Q.  |  E. y  e.  Q.  E. z  e.  Q.  (
y  e.  ( 1st `  w )  /\  z  e.  ( 1st `  v
)  /\  x  =  ( y G z ) ) } ,  { x  e.  Q.  |  E. y  e.  Q.  E. z  e.  Q.  (
y  e.  ( 2nd `  w )  /\  z  e.  ( 2nd `  v
)  /\  x  =  ( y G z ) ) } >. )
5 genpelvl.2 . . . . . . . . 9  |-  ( ( y  e.  Q.  /\  z  e.  Q. )  ->  ( y G z )  e.  Q. )
64, 5genpelvu 7608 . . . . . . . 8  |-  ( ( A  e.  P.  /\  B  e.  P. )  ->  ( f  e.  ( 2nd `  ( A F B ) )  <->  E. g  e.  ( 2nd `  A ) E. h  e.  ( 2nd `  B ) f  =  ( g G h ) ) )
76adantr 276 . . . . . . 7  |-  ( ( ( A  e.  P.  /\  B  e.  P. )  /\  x  e.  Q. )  ->  ( f  e.  ( 2nd `  ( A F B ) )  <->  E. g  e.  ( 2nd `  A ) E. h  e.  ( 2nd `  B ) f  =  ( g G h ) ) )
8 breq1 4046 . . . . . . . . . . . . 13  |-  ( f  =  ( g G h )  ->  (
f  <Q  x  <->  ( g G h )  <Q  x ) )
98biimpd 144 . . . . . . . . . . . 12  |-  ( f  =  ( g G h )  ->  (
f  <Q  x  ->  (
g G h ) 
<Q  x ) )
10 genpcuu.2 . . . . . . . . . . . 12  |-  ( ( ( ( A  e. 
P.  /\  g  e.  ( 2nd `  A ) )  /\  ( B  e.  P.  /\  h  e.  ( 2nd `  B
) ) )  /\  x  e.  Q. )  ->  ( ( g G h )  <Q  x  ->  x  e.  ( 2nd `  ( A F B ) ) ) )
119, 10sylan9r 410 . . . . . . . . . . 11  |-  ( ( ( ( ( A  e.  P.  /\  g  e.  ( 2nd `  A
) )  /\  ( B  e.  P.  /\  h  e.  ( 2nd `  B
) ) )  /\  x  e.  Q. )  /\  f  =  (
g G h ) )  ->  ( f  <Q  x  ->  x  e.  ( 2nd `  ( A F B ) ) ) )
1211exp31 364 . . . . . . . . . 10  |-  ( ( ( A  e.  P.  /\  g  e.  ( 2nd `  A ) )  /\  ( B  e.  P.  /\  h  e.  ( 2nd `  B ) ) )  ->  ( x  e. 
Q.  ->  ( f  =  ( g G h )  ->  ( f  <Q  x  ->  x  e.  ( 2nd `  ( A F B ) ) ) ) ) )
1312an4s 588 . . . . . . . . 9  |-  ( ( ( A  e.  P.  /\  B  e.  P. )  /\  ( g  e.  ( 2nd `  A )  /\  h  e.  ( 2nd `  B ) ) )  ->  (
x  e.  Q.  ->  ( f  =  ( g G h )  -> 
( f  <Q  x  ->  x  e.  ( 2nd `  ( A F B ) ) ) ) ) )
1413impancom 260 . . . . . . . 8  |-  ( ( ( A  e.  P.  /\  B  e.  P. )  /\  x  e.  Q. )  ->  ( ( g  e.  ( 2nd `  A
)  /\  h  e.  ( 2nd `  B ) )  ->  ( f  =  ( g G h )  ->  (
f  <Q  x  ->  x  e.  ( 2nd `  ( A F B ) ) ) ) ) )
1514rexlimdvv 2629 . . . . . . 7  |-  ( ( ( A  e.  P.  /\  B  e.  P. )  /\  x  e.  Q. )  ->  ( E. g  e.  ( 2nd `  A
) E. h  e.  ( 2nd `  B
) f  =  ( g G h )  ->  ( f  <Q  x  ->  x  e.  ( 2nd `  ( A F B ) ) ) ) )
167, 15sylbid 150 . . . . . 6  |-  ( ( ( A  e.  P.  /\  B  e.  P. )  /\  x  e.  Q. )  ->  ( f  e.  ( 2nd `  ( A F B ) )  ->  ( f  <Q  x  ->  x  e.  ( 2nd `  ( A F B ) ) ) ) )
1716ex 115 . . . . 5  |-  ( ( A  e.  P.  /\  B  e.  P. )  ->  ( x  e.  Q.  ->  ( f  e.  ( 2nd `  ( A F B ) )  ->  ( f  <Q  x  ->  x  e.  ( 2nd `  ( A F B ) ) ) ) ) )
183, 17syl5 32 . . . 4  |-  ( ( A  e.  P.  /\  B  e.  P. )  ->  ( f  <Q  x  ->  ( f  e.  ( 2nd `  ( A F B ) )  ->  ( f  <Q  x  ->  x  e.  ( 2nd `  ( A F B ) ) ) ) ) )
1918com34 83 . . 3  |-  ( ( A  e.  P.  /\  B  e.  P. )  ->  ( f  <Q  x  ->  ( f  <Q  x  ->  ( f  e.  ( 2nd `  ( A F B ) )  ->  x  e.  ( 2nd `  ( A F B ) ) ) ) ) )
2019pm2.43d 50 . 2  |-  ( ( A  e.  P.  /\  B  e.  P. )  ->  ( f  <Q  x  ->  ( f  e.  ( 2nd `  ( A F B ) )  ->  x  e.  ( 2nd `  ( A F B ) ) ) ) )
2120com23 78 1  |-  ( ( A  e.  P.  /\  B  e.  P. )  ->  ( f  e.  ( 2nd `  ( A F B ) )  ->  ( f  <Q  x  ->  x  e.  ( 2nd `  ( A F B ) ) ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105    /\ w3a 980    = wceq 1372    e. wcel 2175   E.wrex 2484   {crab 2487   <.cop 3635   class class class wbr 4043   ` cfv 5268  (class class class)co 5934    e. cmpo 5936   1stc1st 6214   2ndc2nd 6215   Q.cnq 7375    <Q cltq 7380   P.cnp 7386
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1469  ax-7 1470  ax-gen 1471  ax-ie1 1515  ax-ie2 1516  ax-8 1526  ax-10 1527  ax-11 1528  ax-i12 1529  ax-bndl 1531  ax-4 1532  ax-17 1548  ax-i9 1552  ax-ial 1556  ax-i5r 1557  ax-13 2177  ax-14 2178  ax-ext 2186  ax-coll 4158  ax-sep 4161  ax-pow 4217  ax-pr 4252  ax-un 4478  ax-setind 4583  ax-iinf 4634
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1375  df-fal 1378  df-nf 1483  df-sb 1785  df-eu 2056  df-mo 2057  df-clab 2191  df-cleq 2197  df-clel 2200  df-nfc 2336  df-ne 2376  df-ral 2488  df-rex 2489  df-reu 2490  df-rab 2492  df-v 2773  df-sbc 2998  df-csb 3093  df-dif 3167  df-un 3169  df-in 3171  df-ss 3178  df-pw 3617  df-sn 3638  df-pr 3639  df-op 3641  df-uni 3850  df-int 3885  df-iun 3928  df-br 4044  df-opab 4105  df-mpt 4106  df-id 4338  df-iom 4637  df-xp 4679  df-rel 4680  df-cnv 4681  df-co 4682  df-dm 4683  df-rn 4684  df-res 4685  df-ima 4686  df-iota 5229  df-fun 5270  df-fn 5271  df-f 5272  df-f1 5273  df-fo 5274  df-f1o 5275  df-fv 5276  df-ov 5937  df-oprab 5938  df-mpo 5939  df-1st 6216  df-2nd 6217  df-qs 6616  df-ni 7399  df-nqqs 7443  df-ltnqqs 7448  df-inp 7561
This theorem is referenced by:  genprndu  7617
  Copyright terms: Public domain W3C validator