ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  facdiv Unicode version

Theorem facdiv 10516
Description: A positive integer divides the factorial of an equal or larger number. (Contributed by NM, 2-May-2005.)
Assertion
Ref Expression
facdiv  |-  ( ( M  e.  NN0  /\  N  e.  NN  /\  N  <_  M )  ->  (
( ! `  M
)  /  N )  e.  NN )

Proof of Theorem facdiv
Dummy variables  j  k are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 breq2 3941 . . . . 5  |-  ( j  =  0  ->  ( N  <_  j  <->  N  <_  0 ) )
2 fveq2 5429 . . . . . . 7  |-  ( j  =  0  ->  ( ! `  j )  =  ( ! ` 
0 ) )
32oveq1d 5797 . . . . . 6  |-  ( j  =  0  ->  (
( ! `  j
)  /  N )  =  ( ( ! `
 0 )  /  N ) )
43eleq1d 2209 . . . . 5  |-  ( j  =  0  ->  (
( ( ! `  j )  /  N
)  e.  NN  <->  ( ( ! `  0 )  /  N )  e.  NN ) )
51, 4imbi12d 233 . . . 4  |-  ( j  =  0  ->  (
( N  <_  j  ->  ( ( ! `  j )  /  N
)  e.  NN )  <-> 
( N  <_  0  ->  ( ( ! ` 
0 )  /  N
)  e.  NN ) ) )
65imbi2d 229 . . 3  |-  ( j  =  0  ->  (
( N  e.  NN  ->  ( N  <_  j  ->  ( ( ! `  j )  /  N
)  e.  NN ) )  <->  ( N  e.  NN  ->  ( N  <_  0  ->  ( ( ! `  0 )  /  N )  e.  NN ) ) ) )
7 breq2 3941 . . . . 5  |-  ( j  =  k  ->  ( N  <_  j  <->  N  <_  k ) )
8 fveq2 5429 . . . . . . 7  |-  ( j  =  k  ->  ( ! `  j )  =  ( ! `  k ) )
98oveq1d 5797 . . . . . 6  |-  ( j  =  k  ->  (
( ! `  j
)  /  N )  =  ( ( ! `
 k )  /  N ) )
109eleq1d 2209 . . . . 5  |-  ( j  =  k  ->  (
( ( ! `  j )  /  N
)  e.  NN  <->  ( ( ! `  k )  /  N )  e.  NN ) )
117, 10imbi12d 233 . . . 4  |-  ( j  =  k  ->  (
( N  <_  j  ->  ( ( ! `  j )  /  N
)  e.  NN )  <-> 
( N  <_  k  ->  ( ( ! `  k )  /  N
)  e.  NN ) ) )
1211imbi2d 229 . . 3  |-  ( j  =  k  ->  (
( N  e.  NN  ->  ( N  <_  j  ->  ( ( ! `  j )  /  N
)  e.  NN ) )  <->  ( N  e.  NN  ->  ( N  <_  k  ->  ( ( ! `  k )  /  N )  e.  NN ) ) ) )
13 breq2 3941 . . . . 5  |-  ( j  =  ( k  +  1 )  ->  ( N  <_  j  <->  N  <_  ( k  +  1 ) ) )
14 fveq2 5429 . . . . . . 7  |-  ( j  =  ( k  +  1 )  ->  ( ! `  j )  =  ( ! `  ( k  +  1 ) ) )
1514oveq1d 5797 . . . . . 6  |-  ( j  =  ( k  +  1 )  ->  (
( ! `  j
)  /  N )  =  ( ( ! `
 ( k  +  1 ) )  /  N ) )
1615eleq1d 2209 . . . . 5  |-  ( j  =  ( k  +  1 )  ->  (
( ( ! `  j )  /  N
)  e.  NN  <->  ( ( ! `  ( k  +  1 ) )  /  N )  e.  NN ) )
1713, 16imbi12d 233 . . . 4  |-  ( j  =  ( k  +  1 )  ->  (
( N  <_  j  ->  ( ( ! `  j )  /  N
)  e.  NN )  <-> 
( N  <_  (
k  +  1 )  ->  ( ( ! `
 ( k  +  1 ) )  /  N )  e.  NN ) ) )
1817imbi2d 229 . . 3  |-  ( j  =  ( k  +  1 )  ->  (
( N  e.  NN  ->  ( N  <_  j  ->  ( ( ! `  j )  /  N
)  e.  NN ) )  <->  ( N  e.  NN  ->  ( N  <_  ( k  +  1 )  ->  ( ( ! `  ( k  +  1 ) )  /  N )  e.  NN ) ) ) )
19 breq2 3941 . . . . 5  |-  ( j  =  M  ->  ( N  <_  j  <->  N  <_  M ) )
20 fveq2 5429 . . . . . . 7  |-  ( j  =  M  ->  ( ! `  j )  =  ( ! `  M ) )
2120oveq1d 5797 . . . . . 6  |-  ( j  =  M  ->  (
( ! `  j
)  /  N )  =  ( ( ! `
 M )  /  N ) )
2221eleq1d 2209 . . . . 5  |-  ( j  =  M  ->  (
( ( ! `  j )  /  N
)  e.  NN  <->  ( ( ! `  M )  /  N )  e.  NN ) )
2319, 22imbi12d 233 . . . 4  |-  ( j  =  M  ->  (
( N  <_  j  ->  ( ( ! `  j )  /  N
)  e.  NN )  <-> 
( N  <_  M  ->  ( ( ! `  M )  /  N
)  e.  NN ) ) )
2423imbi2d 229 . . 3  |-  ( j  =  M  ->  (
( N  e.  NN  ->  ( N  <_  j  ->  ( ( ! `  j )  /  N
)  e.  NN ) )  <->  ( N  e.  NN  ->  ( N  <_  M  ->  ( ( ! `  M )  /  N )  e.  NN ) ) ) )
25 nngt0 8769 . . . . 5  |-  ( N  e.  NN  ->  0  <  N )
26 0z 9089 . . . . . 6  |-  0  e.  ZZ
27 nnz 9097 . . . . . 6  |-  ( N  e.  NN  ->  N  e.  ZZ )
28 zltnle 9124 . . . . . 6  |-  ( ( 0  e.  ZZ  /\  N  e.  ZZ )  ->  ( 0  <  N  <->  -.  N  <_  0 ) )
2926, 27, 28sylancr 411 . . . . 5  |-  ( N  e.  NN  ->  (
0  <  N  <->  -.  N  <_  0 ) )
3025, 29mpbid 146 . . . 4  |-  ( N  e.  NN  ->  -.  N  <_  0 )
3130pm2.21d 609 . . 3  |-  ( N  e.  NN  ->  ( N  <_  0  ->  (
( ! `  0
)  /  N )  e.  NN ) )
32 peano2nn0 9041 . . . . . . . . . . . . 13  |-  ( k  e.  NN0  ->  ( k  +  1 )  e. 
NN0 )
3332nn0zd 9195 . . . . . . . . . . . 12  |-  ( k  e.  NN0  ->  ( k  +  1 )  e.  ZZ )
34 zleloe 9125 . . . . . . . . . . . 12  |-  ( ( N  e.  ZZ  /\  ( k  +  1 )  e.  ZZ )  ->  ( N  <_ 
( k  +  1 )  <->  ( N  < 
( k  +  1 )  \/  N  =  ( k  +  1 ) ) ) )
3527, 33, 34syl2an 287 . . . . . . . . . . 11  |-  ( ( N  e.  NN  /\  k  e.  NN0 )  -> 
( N  <_  (
k  +  1 )  <-> 
( N  <  (
k  +  1 )  \/  N  =  ( k  +  1 ) ) ) )
36 nnnn0 9008 . . . . . . . . . . . . . 14  |-  ( N  e.  NN  ->  N  e.  NN0 )
37 nn0leltp1 9141 . . . . . . . . . . . . . 14  |-  ( ( N  e.  NN0  /\  k  e.  NN0 )  -> 
( N  <_  k  <->  N  <  ( k  +  1 ) ) )
3836, 37sylan 281 . . . . . . . . . . . . 13  |-  ( ( N  e.  NN  /\  k  e.  NN0 )  -> 
( N  <_  k  <->  N  <  ( k  +  1 ) ) )
39 nn0p1nn 9040 . . . . . . . . . . . . . . . . . . 19  |-  ( k  e.  NN0  ->  ( k  +  1 )  e.  NN )
40 nnmulcl 8765 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( ( ! `  k )  /  N
)  e.  NN  /\  ( k  +  1 )  e.  NN )  ->  ( ( ( ! `  k )  /  N )  x.  ( k  +  1 ) )  e.  NN )
4139, 40sylan2 284 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ( ! `  k )  /  N
)  e.  NN  /\  k  e.  NN0 )  -> 
( ( ( ! `
 k )  /  N )  x.  (
k  +  1 ) )  e.  NN )
4241expcom 115 . . . . . . . . . . . . . . . . 17  |-  ( k  e.  NN0  ->  ( ( ( ! `  k
)  /  N )  e.  NN  ->  (
( ( ! `  k )  /  N
)  x.  ( k  +  1 ) )  e.  NN ) )
4342adantl 275 . . . . . . . . . . . . . . . 16  |-  ( ( N  e.  NN  /\  k  e.  NN0 )  -> 
( ( ( ! `
 k )  /  N )  e.  NN  ->  ( ( ( ! `
 k )  /  N )  x.  (
k  +  1 ) )  e.  NN ) )
44 faccl 10513 . . . . . . . . . . . . . . . . . . . 20  |-  ( k  e.  NN0  ->  ( ! `
 k )  e.  NN )
4544nncnd 8758 . . . . . . . . . . . . . . . . . . 19  |-  ( k  e.  NN0  ->  ( ! `
 k )  e.  CC )
4645adantl 275 . . . . . . . . . . . . . . . . . 18  |-  ( ( N  e.  NN  /\  k  e.  NN0 )  -> 
( ! `  k
)  e.  CC )
4732nn0cnd 9056 . . . . . . . . . . . . . . . . . . 19  |-  ( k  e.  NN0  ->  ( k  +  1 )  e.  CC )
4847adantl 275 . . . . . . . . . . . . . . . . . 18  |-  ( ( N  e.  NN  /\  k  e.  NN0 )  -> 
( k  +  1 )  e.  CC )
49 nncn 8752 . . . . . . . . . . . . . . . . . . 19  |-  ( N  e.  NN  ->  N  e.  CC )
5049adantr 274 . . . . . . . . . . . . . . . . . 18  |-  ( ( N  e.  NN  /\  k  e.  NN0 )  ->  N  e.  CC )
51 nnap0 8773 . . . . . . . . . . . . . . . . . . 19  |-  ( N  e.  NN  ->  N #  0 )
5251adantr 274 . . . . . . . . . . . . . . . . . 18  |-  ( ( N  e.  NN  /\  k  e.  NN0 )  ->  N #  0 )
5346, 48, 50, 52div23apd 8612 . . . . . . . . . . . . . . . . 17  |-  ( ( N  e.  NN  /\  k  e.  NN0 )  -> 
( ( ( ! `
 k )  x.  ( k  +  1 ) )  /  N
)  =  ( ( ( ! `  k
)  /  N )  x.  ( k  +  1 ) ) )
5453eleq1d 2209 . . . . . . . . . . . . . . . 16  |-  ( ( N  e.  NN  /\  k  e.  NN0 )  -> 
( ( ( ( ! `  k )  x.  ( k  +  1 ) )  /  N )  e.  NN  <->  ( ( ( ! `  k )  /  N
)  x.  ( k  +  1 ) )  e.  NN ) )
5543, 54sylibrd 168 . . . . . . . . . . . . . . 15  |-  ( ( N  e.  NN  /\  k  e.  NN0 )  -> 
( ( ( ! `
 k )  /  N )  e.  NN  ->  ( ( ( ! `
 k )  x.  ( k  +  1 ) )  /  N
)  e.  NN ) )
5655imim2d 54 . . . . . . . . . . . . . 14  |-  ( ( N  e.  NN  /\  k  e.  NN0 )  -> 
( ( N  <_ 
k  ->  ( ( ! `  k )  /  N )  e.  NN )  ->  ( N  <_ 
k  ->  ( (
( ! `  k
)  x.  ( k  +  1 ) )  /  N )  e.  NN ) ) )
5756com23 78 . . . . . . . . . . . . 13  |-  ( ( N  e.  NN  /\  k  e.  NN0 )  -> 
( N  <_  k  ->  ( ( N  <_ 
k  ->  ( ( ! `  k )  /  N )  e.  NN )  ->  ( ( ( ! `  k )  x.  ( k  +  1 ) )  /  N )  e.  NN ) ) )
5838, 57sylbird 169 . . . . . . . . . . . 12  |-  ( ( N  e.  NN  /\  k  e.  NN0 )  -> 
( N  <  (
k  +  1 )  ->  ( ( N  <_  k  ->  (
( ! `  k
)  /  N )  e.  NN )  -> 
( ( ( ! `
 k )  x.  ( k  +  1 ) )  /  N
)  e.  NN ) ) )
5946, 50, 52divcanap4d 8580 . . . . . . . . . . . . . . 15  |-  ( ( N  e.  NN  /\  k  e.  NN0 )  -> 
( ( ( ! `
 k )  x.  N )  /  N
)  =  ( ! `
 k ) )
6044adantl 275 . . . . . . . . . . . . . . 15  |-  ( ( N  e.  NN  /\  k  e.  NN0 )  -> 
( ! `  k
)  e.  NN )
6159, 60eqeltrd 2217 . . . . . . . . . . . . . 14  |-  ( ( N  e.  NN  /\  k  e.  NN0 )  -> 
( ( ( ! `
 k )  x.  N )  /  N
)  e.  NN )
62 oveq2 5790 . . . . . . . . . . . . . . . 16  |-  ( N  =  ( k  +  1 )  ->  (
( ! `  k
)  x.  N )  =  ( ( ! `
 k )  x.  ( k  +  1 ) ) )
6362oveq1d 5797 . . . . . . . . . . . . . . 15  |-  ( N  =  ( k  +  1 )  ->  (
( ( ! `  k )  x.  N
)  /  N )  =  ( ( ( ! `  k )  x.  ( k  +  1 ) )  /  N ) )
6463eleq1d 2209 . . . . . . . . . . . . . 14  |-  ( N  =  ( k  +  1 )  ->  (
( ( ( ! `
 k )  x.  N )  /  N
)  e.  NN  <->  ( (
( ! `  k
)  x.  ( k  +  1 ) )  /  N )  e.  NN ) )
6561, 64syl5ibcom 154 . . . . . . . . . . . . 13  |-  ( ( N  e.  NN  /\  k  e.  NN0 )  -> 
( N  =  ( k  +  1 )  ->  ( ( ( ! `  k )  x.  ( k  +  1 ) )  /  N )  e.  NN ) )
6665a1dd 48 . . . . . . . . . . . 12  |-  ( ( N  e.  NN  /\  k  e.  NN0 )  -> 
( N  =  ( k  +  1 )  ->  ( ( N  <_  k  ->  (
( ! `  k
)  /  N )  e.  NN )  -> 
( ( ( ! `
 k )  x.  ( k  +  1 ) )  /  N
)  e.  NN ) ) )
6758, 66jaod 707 . . . . . . . . . . 11  |-  ( ( N  e.  NN  /\  k  e.  NN0 )  -> 
( ( N  < 
( k  +  1 )  \/  N  =  ( k  +  1 ) )  ->  (
( N  <_  k  ->  ( ( ! `  k )  /  N
)  e.  NN )  ->  ( ( ( ! `  k )  x.  ( k  +  1 ) )  /  N )  e.  NN ) ) )
6835, 67sylbid 149 . . . . . . . . . 10  |-  ( ( N  e.  NN  /\  k  e.  NN0 )  -> 
( N  <_  (
k  +  1 )  ->  ( ( N  <_  k  ->  (
( ! `  k
)  /  N )  e.  NN )  -> 
( ( ( ! `
 k )  x.  ( k  +  1 ) )  /  N
)  e.  NN ) ) )
6968ex 114 . . . . . . . . 9  |-  ( N  e.  NN  ->  (
k  e.  NN0  ->  ( N  <_  ( k  +  1 )  -> 
( ( N  <_ 
k  ->  ( ( ! `  k )  /  N )  e.  NN )  ->  ( ( ( ! `  k )  x.  ( k  +  1 ) )  /  N )  e.  NN ) ) ) )
7069com34 83 . . . . . . . 8  |-  ( N  e.  NN  ->  (
k  e.  NN0  ->  ( ( N  <_  k  ->  ( ( ! `  k )  /  N
)  e.  NN )  ->  ( N  <_ 
( k  +  1 )  ->  ( (
( ! `  k
)  x.  ( k  +  1 ) )  /  N )  e.  NN ) ) ) )
7170com12 30 . . . . . . 7  |-  ( k  e.  NN0  ->  ( N  e.  NN  ->  (
( N  <_  k  ->  ( ( ! `  k )  /  N
)  e.  NN )  ->  ( N  <_ 
( k  +  1 )  ->  ( (
( ! `  k
)  x.  ( k  +  1 ) )  /  N )  e.  NN ) ) ) )
7271imp4d 350 . . . . . 6  |-  ( k  e.  NN0  ->  ( ( N  e.  NN  /\  ( ( N  <_ 
k  ->  ( ( ! `  k )  /  N )  e.  NN )  /\  N  <_  (
k  +  1 ) ) )  ->  (
( ( ! `  k )  x.  (
k  +  1 ) )  /  N )  e.  NN ) )
73 facp1 10508 . . . . . . . 8  |-  ( k  e.  NN0  ->  ( ! `
 ( k  +  1 ) )  =  ( ( ! `  k )  x.  (
k  +  1 ) ) )
7473oveq1d 5797 . . . . . . 7  |-  ( k  e.  NN0  ->  ( ( ! `  ( k  +  1 ) )  /  N )  =  ( ( ( ! `
 k )  x.  ( k  +  1 ) )  /  N
) )
7574eleq1d 2209 . . . . . 6  |-  ( k  e.  NN0  ->  ( ( ( ! `  (
k  +  1 ) )  /  N )  e.  NN  <->  ( (
( ! `  k
)  x.  ( k  +  1 ) )  /  N )  e.  NN ) )
7672, 75sylibrd 168 . . . . 5  |-  ( k  e.  NN0  ->  ( ( N  e.  NN  /\  ( ( N  <_ 
k  ->  ( ( ! `  k )  /  N )  e.  NN )  /\  N  <_  (
k  +  1 ) ) )  ->  (
( ! `  (
k  +  1 ) )  /  N )  e.  NN ) )
7776exp4d 367 . . . 4  |-  ( k  e.  NN0  ->  ( N  e.  NN  ->  (
( N  <_  k  ->  ( ( ! `  k )  /  N
)  e.  NN )  ->  ( N  <_ 
( k  +  1 )  ->  ( ( ! `  ( k  +  1 ) )  /  N )  e.  NN ) ) ) )
7877a2d 26 . . 3  |-  ( k  e.  NN0  ->  ( ( N  e.  NN  ->  ( N  <_  k  ->  ( ( ! `  k
)  /  N )  e.  NN ) )  ->  ( N  e.  NN  ->  ( N  <_  ( k  +  1 )  ->  ( ( ! `  ( k  +  1 ) )  /  N )  e.  NN ) ) ) )
796, 12, 18, 24, 31, 78nn0ind 9189 . 2  |-  ( M  e.  NN0  ->  ( N  e.  NN  ->  ( N  <_  M  ->  (
( ! `  M
)  /  N )  e.  NN ) ) )
80793imp 1176 1  |-  ( ( M  e.  NN0  /\  N  e.  NN  /\  N  <_  M )  ->  (
( ! `  M
)  /  N )  e.  NN )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 103    <-> wb 104    \/ wo 698    /\ w3a 963    = wceq 1332    e. wcel 1481   class class class wbr 3937   ` cfv 5131  (class class class)co 5782   CCcc 7642   0cc0 7644   1c1 7645    + caddc 7647    x. cmul 7649    < clt 7824    <_ cle 7825   # cap 8367    / cdiv 8456   NNcn 8744   NN0cn0 9001   ZZcz 9078   !cfa 10503
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1424  ax-7 1425  ax-gen 1426  ax-ie1 1470  ax-ie2 1471  ax-8 1483  ax-10 1484  ax-11 1485  ax-i12 1486  ax-bndl 1487  ax-4 1488  ax-13 1492  ax-14 1493  ax-17 1507  ax-i9 1511  ax-ial 1515  ax-i5r 1516  ax-ext 2122  ax-coll 4051  ax-sep 4054  ax-nul 4062  ax-pow 4106  ax-pr 4139  ax-un 4363  ax-setind 4460  ax-iinf 4510  ax-cnex 7735  ax-resscn 7736  ax-1cn 7737  ax-1re 7738  ax-icn 7739  ax-addcl 7740  ax-addrcl 7741  ax-mulcl 7742  ax-mulrcl 7743  ax-addcom 7744  ax-mulcom 7745  ax-addass 7746  ax-mulass 7747  ax-distr 7748  ax-i2m1 7749  ax-0lt1 7750  ax-1rid 7751  ax-0id 7752  ax-rnegex 7753  ax-precex 7754  ax-cnre 7755  ax-pre-ltirr 7756  ax-pre-ltwlin 7757  ax-pre-lttrn 7758  ax-pre-apti 7759  ax-pre-ltadd 7760  ax-pre-mulgt0 7761  ax-pre-mulext 7762
This theorem depends on definitions:  df-bi 116  df-3or 964  df-3an 965  df-tru 1335  df-fal 1338  df-nf 1438  df-sb 1737  df-eu 2003  df-mo 2004  df-clab 2127  df-cleq 2133  df-clel 2136  df-nfc 2271  df-ne 2310  df-nel 2405  df-ral 2422  df-rex 2423  df-reu 2424  df-rmo 2425  df-rab 2426  df-v 2691  df-sbc 2914  df-csb 3008  df-dif 3078  df-un 3080  df-in 3082  df-ss 3089  df-nul 3369  df-pw 3517  df-sn 3538  df-pr 3539  df-op 3541  df-uni 3745  df-int 3780  df-iun 3823  df-br 3938  df-opab 3998  df-mpt 3999  df-tr 4035  df-id 4223  df-po 4226  df-iso 4227  df-iord 4296  df-on 4298  df-ilim 4299  df-suc 4301  df-iom 4513  df-xp 4553  df-rel 4554  df-cnv 4555  df-co 4556  df-dm 4557  df-rn 4558  df-res 4559  df-ima 4560  df-iota 5096  df-fun 5133  df-fn 5134  df-f 5135  df-f1 5136  df-fo 5137  df-f1o 5138  df-fv 5139  df-riota 5738  df-ov 5785  df-oprab 5786  df-mpo 5787  df-1st 6046  df-2nd 6047  df-recs 6210  df-frec 6296  df-pnf 7826  df-mnf 7827  df-xr 7828  df-ltxr 7829  df-le 7830  df-sub 7959  df-neg 7960  df-reap 8361  df-ap 8368  df-div 8457  df-inn 8745  df-n0 9002  df-z 9079  df-uz 9351  df-seqfrec 10250  df-fac 10504
This theorem is referenced by:  facndiv  10517  eirraplem  11519
  Copyright terms: Public domain W3C validator