ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  facdiv Unicode version

Theorem facdiv 10111
Description: A positive integer divides the factorial of an equal or larger number. (Contributed by NM, 2-May-2005.)
Assertion
Ref Expression
facdiv  |-  ( ( M  e.  NN0  /\  N  e.  NN  /\  N  <_  M )  ->  (
( ! `  M
)  /  N )  e.  NN )

Proof of Theorem facdiv
Dummy variables  j  k are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 breq2 3841 . . . . 5  |-  ( j  =  0  ->  ( N  <_  j  <->  N  <_  0 ) )
2 fveq2 5289 . . . . . . 7  |-  ( j  =  0  ->  ( ! `  j )  =  ( ! ` 
0 ) )
32oveq1d 5649 . . . . . 6  |-  ( j  =  0  ->  (
( ! `  j
)  /  N )  =  ( ( ! `
 0 )  /  N ) )
43eleq1d 2156 . . . . 5  |-  ( j  =  0  ->  (
( ( ! `  j )  /  N
)  e.  NN  <->  ( ( ! `  0 )  /  N )  e.  NN ) )
51, 4imbi12d 232 . . . 4  |-  ( j  =  0  ->  (
( N  <_  j  ->  ( ( ! `  j )  /  N
)  e.  NN )  <-> 
( N  <_  0  ->  ( ( ! ` 
0 )  /  N
)  e.  NN ) ) )
65imbi2d 228 . . 3  |-  ( j  =  0  ->  (
( N  e.  NN  ->  ( N  <_  j  ->  ( ( ! `  j )  /  N
)  e.  NN ) )  <->  ( N  e.  NN  ->  ( N  <_  0  ->  ( ( ! `  0 )  /  N )  e.  NN ) ) ) )
7 breq2 3841 . . . . 5  |-  ( j  =  k  ->  ( N  <_  j  <->  N  <_  k ) )
8 fveq2 5289 . . . . . . 7  |-  ( j  =  k  ->  ( ! `  j )  =  ( ! `  k ) )
98oveq1d 5649 . . . . . 6  |-  ( j  =  k  ->  (
( ! `  j
)  /  N )  =  ( ( ! `
 k )  /  N ) )
109eleq1d 2156 . . . . 5  |-  ( j  =  k  ->  (
( ( ! `  j )  /  N
)  e.  NN  <->  ( ( ! `  k )  /  N )  e.  NN ) )
117, 10imbi12d 232 . . . 4  |-  ( j  =  k  ->  (
( N  <_  j  ->  ( ( ! `  j )  /  N
)  e.  NN )  <-> 
( N  <_  k  ->  ( ( ! `  k )  /  N
)  e.  NN ) ) )
1211imbi2d 228 . . 3  |-  ( j  =  k  ->  (
( N  e.  NN  ->  ( N  <_  j  ->  ( ( ! `  j )  /  N
)  e.  NN ) )  <->  ( N  e.  NN  ->  ( N  <_  k  ->  ( ( ! `  k )  /  N )  e.  NN ) ) ) )
13 breq2 3841 . . . . 5  |-  ( j  =  ( k  +  1 )  ->  ( N  <_  j  <->  N  <_  ( k  +  1 ) ) )
14 fveq2 5289 . . . . . . 7  |-  ( j  =  ( k  +  1 )  ->  ( ! `  j )  =  ( ! `  ( k  +  1 ) ) )
1514oveq1d 5649 . . . . . 6  |-  ( j  =  ( k  +  1 )  ->  (
( ! `  j
)  /  N )  =  ( ( ! `
 ( k  +  1 ) )  /  N ) )
1615eleq1d 2156 . . . . 5  |-  ( j  =  ( k  +  1 )  ->  (
( ( ! `  j )  /  N
)  e.  NN  <->  ( ( ! `  ( k  +  1 ) )  /  N )  e.  NN ) )
1713, 16imbi12d 232 . . . 4  |-  ( j  =  ( k  +  1 )  ->  (
( N  <_  j  ->  ( ( ! `  j )  /  N
)  e.  NN )  <-> 
( N  <_  (
k  +  1 )  ->  ( ( ! `
 ( k  +  1 ) )  /  N )  e.  NN ) ) )
1817imbi2d 228 . . 3  |-  ( j  =  ( k  +  1 )  ->  (
( N  e.  NN  ->  ( N  <_  j  ->  ( ( ! `  j )  /  N
)  e.  NN ) )  <->  ( N  e.  NN  ->  ( N  <_  ( k  +  1 )  ->  ( ( ! `  ( k  +  1 ) )  /  N )  e.  NN ) ) ) )
19 breq2 3841 . . . . 5  |-  ( j  =  M  ->  ( N  <_  j  <->  N  <_  M ) )
20 fveq2 5289 . . . . . . 7  |-  ( j  =  M  ->  ( ! `  j )  =  ( ! `  M ) )
2120oveq1d 5649 . . . . . 6  |-  ( j  =  M  ->  (
( ! `  j
)  /  N )  =  ( ( ! `
 M )  /  N ) )
2221eleq1d 2156 . . . . 5  |-  ( j  =  M  ->  (
( ( ! `  j )  /  N
)  e.  NN  <->  ( ( ! `  M )  /  N )  e.  NN ) )
2319, 22imbi12d 232 . . . 4  |-  ( j  =  M  ->  (
( N  <_  j  ->  ( ( ! `  j )  /  N
)  e.  NN )  <-> 
( N  <_  M  ->  ( ( ! `  M )  /  N
)  e.  NN ) ) )
2423imbi2d 228 . . 3  |-  ( j  =  M  ->  (
( N  e.  NN  ->  ( N  <_  j  ->  ( ( ! `  j )  /  N
)  e.  NN ) )  <->  ( N  e.  NN  ->  ( N  <_  M  ->  ( ( ! `  M )  /  N )  e.  NN ) ) ) )
25 nngt0 8419 . . . . 5  |-  ( N  e.  NN  ->  0  <  N )
26 0z 8731 . . . . . 6  |-  0  e.  ZZ
27 nnz 8739 . . . . . 6  |-  ( N  e.  NN  ->  N  e.  ZZ )
28 zltnle 8766 . . . . . 6  |-  ( ( 0  e.  ZZ  /\  N  e.  ZZ )  ->  ( 0  <  N  <->  -.  N  <_  0 ) )
2926, 27, 28sylancr 405 . . . . 5  |-  ( N  e.  NN  ->  (
0  <  N  <->  -.  N  <_  0 ) )
3025, 29mpbid 145 . . . 4  |-  ( N  e.  NN  ->  -.  N  <_  0 )
3130pm2.21d 584 . . 3  |-  ( N  e.  NN  ->  ( N  <_  0  ->  (
( ! `  0
)  /  N )  e.  NN ) )
32 peano2nn0 8683 . . . . . . . . . . . . 13  |-  ( k  e.  NN0  ->  ( k  +  1 )  e. 
NN0 )
3332nn0zd 8836 . . . . . . . . . . . 12  |-  ( k  e.  NN0  ->  ( k  +  1 )  e.  ZZ )
34 zleloe 8767 . . . . . . . . . . . 12  |-  ( ( N  e.  ZZ  /\  ( k  +  1 )  e.  ZZ )  ->  ( N  <_ 
( k  +  1 )  <->  ( N  < 
( k  +  1 )  \/  N  =  ( k  +  1 ) ) ) )
3527, 33, 34syl2an 283 . . . . . . . . . . 11  |-  ( ( N  e.  NN  /\  k  e.  NN0 )  -> 
( N  <_  (
k  +  1 )  <-> 
( N  <  (
k  +  1 )  \/  N  =  ( k  +  1 ) ) ) )
36 nnnn0 8650 . . . . . . . . . . . . . 14  |-  ( N  e.  NN  ->  N  e.  NN0 )
37 nn0leltp1 8783 . . . . . . . . . . . . . 14  |-  ( ( N  e.  NN0  /\  k  e.  NN0 )  -> 
( N  <_  k  <->  N  <  ( k  +  1 ) ) )
3836, 37sylan 277 . . . . . . . . . . . . 13  |-  ( ( N  e.  NN  /\  k  e.  NN0 )  -> 
( N  <_  k  <->  N  <  ( k  +  1 ) ) )
39 nn0p1nn 8682 . . . . . . . . . . . . . . . . . . 19  |-  ( k  e.  NN0  ->  ( k  +  1 )  e.  NN )
40 nnmulcl 8415 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( ( ! `  k )  /  N
)  e.  NN  /\  ( k  +  1 )  e.  NN )  ->  ( ( ( ! `  k )  /  N )  x.  ( k  +  1 ) )  e.  NN )
4139, 40sylan2 280 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ( ! `  k )  /  N
)  e.  NN  /\  k  e.  NN0 )  -> 
( ( ( ! `
 k )  /  N )  x.  (
k  +  1 ) )  e.  NN )
4241expcom 114 . . . . . . . . . . . . . . . . 17  |-  ( k  e.  NN0  ->  ( ( ( ! `  k
)  /  N )  e.  NN  ->  (
( ( ! `  k )  /  N
)  x.  ( k  +  1 ) )  e.  NN ) )
4342adantl 271 . . . . . . . . . . . . . . . 16  |-  ( ( N  e.  NN  /\  k  e.  NN0 )  -> 
( ( ( ! `
 k )  /  N )  e.  NN  ->  ( ( ( ! `
 k )  /  N )  x.  (
k  +  1 ) )  e.  NN ) )
44 faccl 10108 . . . . . . . . . . . . . . . . . . . 20  |-  ( k  e.  NN0  ->  ( ! `
 k )  e.  NN )
4544nncnd 8408 . . . . . . . . . . . . . . . . . . 19  |-  ( k  e.  NN0  ->  ( ! `
 k )  e.  CC )
4645adantl 271 . . . . . . . . . . . . . . . . . 18  |-  ( ( N  e.  NN  /\  k  e.  NN0 )  -> 
( ! `  k
)  e.  CC )
4732nn0cnd 8698 . . . . . . . . . . . . . . . . . . 19  |-  ( k  e.  NN0  ->  ( k  +  1 )  e.  CC )
4847adantl 271 . . . . . . . . . . . . . . . . . 18  |-  ( ( N  e.  NN  /\  k  e.  NN0 )  -> 
( k  +  1 )  e.  CC )
49 nncn 8402 . . . . . . . . . . . . . . . . . . 19  |-  ( N  e.  NN  ->  N  e.  CC )
5049adantr 270 . . . . . . . . . . . . . . . . . 18  |-  ( ( N  e.  NN  /\  k  e.  NN0 )  ->  N  e.  CC )
51 nnap0 8423 . . . . . . . . . . . . . . . . . . 19  |-  ( N  e.  NN  ->  N #  0 )
5251adantr 270 . . . . . . . . . . . . . . . . . 18  |-  ( ( N  e.  NN  /\  k  e.  NN0 )  ->  N #  0 )
5346, 48, 50, 52div23apd 8267 . . . . . . . . . . . . . . . . 17  |-  ( ( N  e.  NN  /\  k  e.  NN0 )  -> 
( ( ( ! `
 k )  x.  ( k  +  1 ) )  /  N
)  =  ( ( ( ! `  k
)  /  N )  x.  ( k  +  1 ) ) )
5453eleq1d 2156 . . . . . . . . . . . . . . . 16  |-  ( ( N  e.  NN  /\  k  e.  NN0 )  -> 
( ( ( ( ! `  k )  x.  ( k  +  1 ) )  /  N )  e.  NN  <->  ( ( ( ! `  k )  /  N
)  x.  ( k  +  1 ) )  e.  NN ) )
5543, 54sylibrd 167 . . . . . . . . . . . . . . 15  |-  ( ( N  e.  NN  /\  k  e.  NN0 )  -> 
( ( ( ! `
 k )  /  N )  e.  NN  ->  ( ( ( ! `
 k )  x.  ( k  +  1 ) )  /  N
)  e.  NN ) )
5655imim2d 53 . . . . . . . . . . . . . 14  |-  ( ( N  e.  NN  /\  k  e.  NN0 )  -> 
( ( N  <_ 
k  ->  ( ( ! `  k )  /  N )  e.  NN )  ->  ( N  <_ 
k  ->  ( (
( ! `  k
)  x.  ( k  +  1 ) )  /  N )  e.  NN ) ) )
5756com23 77 . . . . . . . . . . . . 13  |-  ( ( N  e.  NN  /\  k  e.  NN0 )  -> 
( N  <_  k  ->  ( ( N  <_ 
k  ->  ( ( ! `  k )  /  N )  e.  NN )  ->  ( ( ( ! `  k )  x.  ( k  +  1 ) )  /  N )  e.  NN ) ) )
5838, 57sylbird 168 . . . . . . . . . . . 12  |-  ( ( N  e.  NN  /\  k  e.  NN0 )  -> 
( N  <  (
k  +  1 )  ->  ( ( N  <_  k  ->  (
( ! `  k
)  /  N )  e.  NN )  -> 
( ( ( ! `
 k )  x.  ( k  +  1 ) )  /  N
)  e.  NN ) ) )
5946, 50, 52divcanap4d 8236 . . . . . . . . . . . . . . 15  |-  ( ( N  e.  NN  /\  k  e.  NN0 )  -> 
( ( ( ! `
 k )  x.  N )  /  N
)  =  ( ! `
 k ) )
6044adantl 271 . . . . . . . . . . . . . . 15  |-  ( ( N  e.  NN  /\  k  e.  NN0 )  -> 
( ! `  k
)  e.  NN )
6159, 60eqeltrd 2164 . . . . . . . . . . . . . 14  |-  ( ( N  e.  NN  /\  k  e.  NN0 )  -> 
( ( ( ! `
 k )  x.  N )  /  N
)  e.  NN )
62 oveq2 5642 . . . . . . . . . . . . . . . 16  |-  ( N  =  ( k  +  1 )  ->  (
( ! `  k
)  x.  N )  =  ( ( ! `
 k )  x.  ( k  +  1 ) ) )
6362oveq1d 5649 . . . . . . . . . . . . . . 15  |-  ( N  =  ( k  +  1 )  ->  (
( ( ! `  k )  x.  N
)  /  N )  =  ( ( ( ! `  k )  x.  ( k  +  1 ) )  /  N ) )
6463eleq1d 2156 . . . . . . . . . . . . . 14  |-  ( N  =  ( k  +  1 )  ->  (
( ( ( ! `
 k )  x.  N )  /  N
)  e.  NN  <->  ( (
( ! `  k
)  x.  ( k  +  1 ) )  /  N )  e.  NN ) )
6561, 64syl5ibcom 153 . . . . . . . . . . . . 13  |-  ( ( N  e.  NN  /\  k  e.  NN0 )  -> 
( N  =  ( k  +  1 )  ->  ( ( ( ! `  k )  x.  ( k  +  1 ) )  /  N )  e.  NN ) )
6665a1dd 47 . . . . . . . . . . . 12  |-  ( ( N  e.  NN  /\  k  e.  NN0 )  -> 
( N  =  ( k  +  1 )  ->  ( ( N  <_  k  ->  (
( ! `  k
)  /  N )  e.  NN )  -> 
( ( ( ! `
 k )  x.  ( k  +  1 ) )  /  N
)  e.  NN ) ) )
6758, 66jaod 672 . . . . . . . . . . 11  |-  ( ( N  e.  NN  /\  k  e.  NN0 )  -> 
( ( N  < 
( k  +  1 )  \/  N  =  ( k  +  1 ) )  ->  (
( N  <_  k  ->  ( ( ! `  k )  /  N
)  e.  NN )  ->  ( ( ( ! `  k )  x.  ( k  +  1 ) )  /  N )  e.  NN ) ) )
6835, 67sylbid 148 . . . . . . . . . 10  |-  ( ( N  e.  NN  /\  k  e.  NN0 )  -> 
( N  <_  (
k  +  1 )  ->  ( ( N  <_  k  ->  (
( ! `  k
)  /  N )  e.  NN )  -> 
( ( ( ! `
 k )  x.  ( k  +  1 ) )  /  N
)  e.  NN ) ) )
6968ex 113 . . . . . . . . 9  |-  ( N  e.  NN  ->  (
k  e.  NN0  ->  ( N  <_  ( k  +  1 )  -> 
( ( N  <_ 
k  ->  ( ( ! `  k )  /  N )  e.  NN )  ->  ( ( ( ! `  k )  x.  ( k  +  1 ) )  /  N )  e.  NN ) ) ) )
7069com34 82 . . . . . . . 8  |-  ( N  e.  NN  ->  (
k  e.  NN0  ->  ( ( N  <_  k  ->  ( ( ! `  k )  /  N
)  e.  NN )  ->  ( N  <_ 
( k  +  1 )  ->  ( (
( ! `  k
)  x.  ( k  +  1 ) )  /  N )  e.  NN ) ) ) )
7170com12 30 . . . . . . 7  |-  ( k  e.  NN0  ->  ( N  e.  NN  ->  (
( N  <_  k  ->  ( ( ! `  k )  /  N
)  e.  NN )  ->  ( N  <_ 
( k  +  1 )  ->  ( (
( ! `  k
)  x.  ( k  +  1 ) )  /  N )  e.  NN ) ) ) )
7271imp4d 344 . . . . . 6  |-  ( k  e.  NN0  ->  ( ( N  e.  NN  /\  ( ( N  <_ 
k  ->  ( ( ! `  k )  /  N )  e.  NN )  /\  N  <_  (
k  +  1 ) ) )  ->  (
( ( ! `  k )  x.  (
k  +  1 ) )  /  N )  e.  NN ) )
73 facp1 10103 . . . . . . . 8  |-  ( k  e.  NN0  ->  ( ! `
 ( k  +  1 ) )  =  ( ( ! `  k )  x.  (
k  +  1 ) ) )
7473oveq1d 5649 . . . . . . 7  |-  ( k  e.  NN0  ->  ( ( ! `  ( k  +  1 ) )  /  N )  =  ( ( ( ! `
 k )  x.  ( k  +  1 ) )  /  N
) )
7574eleq1d 2156 . . . . . 6  |-  ( k  e.  NN0  ->  ( ( ( ! `  (
k  +  1 ) )  /  N )  e.  NN  <->  ( (
( ! `  k
)  x.  ( k  +  1 ) )  /  N )  e.  NN ) )
7672, 75sylibrd 167 . . . . 5  |-  ( k  e.  NN0  ->  ( ( N  e.  NN  /\  ( ( N  <_ 
k  ->  ( ( ! `  k )  /  N )  e.  NN )  /\  N  <_  (
k  +  1 ) ) )  ->  (
( ! `  (
k  +  1 ) )  /  N )  e.  NN ) )
7776exp4d 361 . . . 4  |-  ( k  e.  NN0  ->  ( N  e.  NN  ->  (
( N  <_  k  ->  ( ( ! `  k )  /  N
)  e.  NN )  ->  ( N  <_ 
( k  +  1 )  ->  ( ( ! `  ( k  +  1 ) )  /  N )  e.  NN ) ) ) )
7877a2d 26 . . 3  |-  ( k  e.  NN0  ->  ( ( N  e.  NN  ->  ( N  <_  k  ->  ( ( ! `  k
)  /  N )  e.  NN ) )  ->  ( N  e.  NN  ->  ( N  <_  ( k  +  1 )  ->  ( ( ! `  ( k  +  1 ) )  /  N )  e.  NN ) ) ) )
796, 12, 18, 24, 31, 78nn0ind 8830 . 2  |-  ( M  e.  NN0  ->  ( N  e.  NN  ->  ( N  <_  M  ->  (
( ! `  M
)  /  N )  e.  NN ) ) )
80793imp 1137 1  |-  ( ( M  e.  NN0  /\  N  e.  NN  /\  N  <_  M )  ->  (
( ! `  M
)  /  N )  e.  NN )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 102    <-> wb 103    \/ wo 664    /\ w3a 924    = wceq 1289    e. wcel 1438   class class class wbr 3837   ` cfv 5002  (class class class)co 5634   CCcc 7327   0cc0 7329   1c1 7330    + caddc 7332    x. cmul 7334    < clt 7501    <_ cle 7502   # cap 8034    / cdiv 8113   NNcn 8394   NN0cn0 8643   ZZcz 8720   !cfa 10098
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-in1 579  ax-in2 580  ax-io 665  ax-5 1381  ax-7 1382  ax-gen 1383  ax-ie1 1427  ax-ie2 1428  ax-8 1440  ax-10 1441  ax-11 1442  ax-i12 1443  ax-bndl 1444  ax-4 1445  ax-13 1449  ax-14 1450  ax-17 1464  ax-i9 1468  ax-ial 1472  ax-i5r 1473  ax-ext 2070  ax-coll 3946  ax-sep 3949  ax-nul 3957  ax-pow 4001  ax-pr 4027  ax-un 4251  ax-setind 4343  ax-iinf 4393  ax-cnex 7415  ax-resscn 7416  ax-1cn 7417  ax-1re 7418  ax-icn 7419  ax-addcl 7420  ax-addrcl 7421  ax-mulcl 7422  ax-mulrcl 7423  ax-addcom 7424  ax-mulcom 7425  ax-addass 7426  ax-mulass 7427  ax-distr 7428  ax-i2m1 7429  ax-0lt1 7430  ax-1rid 7431  ax-0id 7432  ax-rnegex 7433  ax-precex 7434  ax-cnre 7435  ax-pre-ltirr 7436  ax-pre-ltwlin 7437  ax-pre-lttrn 7438  ax-pre-apti 7439  ax-pre-ltadd 7440  ax-pre-mulgt0 7441  ax-pre-mulext 7442
This theorem depends on definitions:  df-bi 115  df-3or 925  df-3an 926  df-tru 1292  df-fal 1295  df-nf 1395  df-sb 1693  df-eu 1951  df-mo 1952  df-clab 2075  df-cleq 2081  df-clel 2084  df-nfc 2217  df-ne 2256  df-nel 2351  df-ral 2364  df-rex 2365  df-reu 2366  df-rmo 2367  df-rab 2368  df-v 2621  df-sbc 2839  df-csb 2932  df-dif 2999  df-un 3001  df-in 3003  df-ss 3010  df-nul 3285  df-pw 3427  df-sn 3447  df-pr 3448  df-op 3450  df-uni 3649  df-int 3684  df-iun 3727  df-br 3838  df-opab 3892  df-mpt 3893  df-tr 3929  df-id 4111  df-po 4114  df-iso 4115  df-iord 4184  df-on 4186  df-ilim 4187  df-suc 4189  df-iom 4396  df-xp 4434  df-rel 4435  df-cnv 4436  df-co 4437  df-dm 4438  df-rn 4439  df-res 4440  df-ima 4441  df-iota 4967  df-fun 5004  df-fn 5005  df-f 5006  df-f1 5007  df-fo 5008  df-f1o 5009  df-fv 5010  df-riota 5590  df-ov 5637  df-oprab 5638  df-mpt2 5639  df-1st 5893  df-2nd 5894  df-recs 6052  df-frec 6138  df-pnf 7503  df-mnf 7504  df-xr 7505  df-ltxr 7506  df-le 7507  df-sub 7634  df-neg 7635  df-reap 8028  df-ap 8035  df-div 8114  df-inn 8395  df-n0 8644  df-z 8721  df-uz 8989  df-iseq 9818  df-fac 10099
This theorem is referenced by:  facndiv  10112
  Copyright terms: Public domain W3C validator