ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  facdiv Unicode version

Theorem facdiv 10477
Description: A positive integer divides the factorial of an equal or larger number. (Contributed by NM, 2-May-2005.)
Assertion
Ref Expression
facdiv  |-  ( ( M  e.  NN0  /\  N  e.  NN  /\  N  <_  M )  ->  (
( ! `  M
)  /  N )  e.  NN )

Proof of Theorem facdiv
Dummy variables  j  k are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 breq2 3928 . . . . 5  |-  ( j  =  0  ->  ( N  <_  j  <->  N  <_  0 ) )
2 fveq2 5414 . . . . . . 7  |-  ( j  =  0  ->  ( ! `  j )  =  ( ! ` 
0 ) )
32oveq1d 5782 . . . . . 6  |-  ( j  =  0  ->  (
( ! `  j
)  /  N )  =  ( ( ! `
 0 )  /  N ) )
43eleq1d 2206 . . . . 5  |-  ( j  =  0  ->  (
( ( ! `  j )  /  N
)  e.  NN  <->  ( ( ! `  0 )  /  N )  e.  NN ) )
51, 4imbi12d 233 . . . 4  |-  ( j  =  0  ->  (
( N  <_  j  ->  ( ( ! `  j )  /  N
)  e.  NN )  <-> 
( N  <_  0  ->  ( ( ! ` 
0 )  /  N
)  e.  NN ) ) )
65imbi2d 229 . . 3  |-  ( j  =  0  ->  (
( N  e.  NN  ->  ( N  <_  j  ->  ( ( ! `  j )  /  N
)  e.  NN ) )  <->  ( N  e.  NN  ->  ( N  <_  0  ->  ( ( ! `  0 )  /  N )  e.  NN ) ) ) )
7 breq2 3928 . . . . 5  |-  ( j  =  k  ->  ( N  <_  j  <->  N  <_  k ) )
8 fveq2 5414 . . . . . . 7  |-  ( j  =  k  ->  ( ! `  j )  =  ( ! `  k ) )
98oveq1d 5782 . . . . . 6  |-  ( j  =  k  ->  (
( ! `  j
)  /  N )  =  ( ( ! `
 k )  /  N ) )
109eleq1d 2206 . . . . 5  |-  ( j  =  k  ->  (
( ( ! `  j )  /  N
)  e.  NN  <->  ( ( ! `  k )  /  N )  e.  NN ) )
117, 10imbi12d 233 . . . 4  |-  ( j  =  k  ->  (
( N  <_  j  ->  ( ( ! `  j )  /  N
)  e.  NN )  <-> 
( N  <_  k  ->  ( ( ! `  k )  /  N
)  e.  NN ) ) )
1211imbi2d 229 . . 3  |-  ( j  =  k  ->  (
( N  e.  NN  ->  ( N  <_  j  ->  ( ( ! `  j )  /  N
)  e.  NN ) )  <->  ( N  e.  NN  ->  ( N  <_  k  ->  ( ( ! `  k )  /  N )  e.  NN ) ) ) )
13 breq2 3928 . . . . 5  |-  ( j  =  ( k  +  1 )  ->  ( N  <_  j  <->  N  <_  ( k  +  1 ) ) )
14 fveq2 5414 . . . . . . 7  |-  ( j  =  ( k  +  1 )  ->  ( ! `  j )  =  ( ! `  ( k  +  1 ) ) )
1514oveq1d 5782 . . . . . 6  |-  ( j  =  ( k  +  1 )  ->  (
( ! `  j
)  /  N )  =  ( ( ! `
 ( k  +  1 ) )  /  N ) )
1615eleq1d 2206 . . . . 5  |-  ( j  =  ( k  +  1 )  ->  (
( ( ! `  j )  /  N
)  e.  NN  <->  ( ( ! `  ( k  +  1 ) )  /  N )  e.  NN ) )
1713, 16imbi12d 233 . . . 4  |-  ( j  =  ( k  +  1 )  ->  (
( N  <_  j  ->  ( ( ! `  j )  /  N
)  e.  NN )  <-> 
( N  <_  (
k  +  1 )  ->  ( ( ! `
 ( k  +  1 ) )  /  N )  e.  NN ) ) )
1817imbi2d 229 . . 3  |-  ( j  =  ( k  +  1 )  ->  (
( N  e.  NN  ->  ( N  <_  j  ->  ( ( ! `  j )  /  N
)  e.  NN ) )  <->  ( N  e.  NN  ->  ( N  <_  ( k  +  1 )  ->  ( ( ! `  ( k  +  1 ) )  /  N )  e.  NN ) ) ) )
19 breq2 3928 . . . . 5  |-  ( j  =  M  ->  ( N  <_  j  <->  N  <_  M ) )
20 fveq2 5414 . . . . . . 7  |-  ( j  =  M  ->  ( ! `  j )  =  ( ! `  M ) )
2120oveq1d 5782 . . . . . 6  |-  ( j  =  M  ->  (
( ! `  j
)  /  N )  =  ( ( ! `
 M )  /  N ) )
2221eleq1d 2206 . . . . 5  |-  ( j  =  M  ->  (
( ( ! `  j )  /  N
)  e.  NN  <->  ( ( ! `  M )  /  N )  e.  NN ) )
2319, 22imbi12d 233 . . . 4  |-  ( j  =  M  ->  (
( N  <_  j  ->  ( ( ! `  j )  /  N
)  e.  NN )  <-> 
( N  <_  M  ->  ( ( ! `  M )  /  N
)  e.  NN ) ) )
2423imbi2d 229 . . 3  |-  ( j  =  M  ->  (
( N  e.  NN  ->  ( N  <_  j  ->  ( ( ! `  j )  /  N
)  e.  NN ) )  <->  ( N  e.  NN  ->  ( N  <_  M  ->  ( ( ! `  M )  /  N )  e.  NN ) ) ) )
25 nngt0 8738 . . . . 5  |-  ( N  e.  NN  ->  0  <  N )
26 0z 9058 . . . . . 6  |-  0  e.  ZZ
27 nnz 9066 . . . . . 6  |-  ( N  e.  NN  ->  N  e.  ZZ )
28 zltnle 9093 . . . . . 6  |-  ( ( 0  e.  ZZ  /\  N  e.  ZZ )  ->  ( 0  <  N  <->  -.  N  <_  0 ) )
2926, 27, 28sylancr 410 . . . . 5  |-  ( N  e.  NN  ->  (
0  <  N  <->  -.  N  <_  0 ) )
3025, 29mpbid 146 . . . 4  |-  ( N  e.  NN  ->  -.  N  <_  0 )
3130pm2.21d 608 . . 3  |-  ( N  e.  NN  ->  ( N  <_  0  ->  (
( ! `  0
)  /  N )  e.  NN ) )
32 peano2nn0 9010 . . . . . . . . . . . . 13  |-  ( k  e.  NN0  ->  ( k  +  1 )  e. 
NN0 )
3332nn0zd 9164 . . . . . . . . . . . 12  |-  ( k  e.  NN0  ->  ( k  +  1 )  e.  ZZ )
34 zleloe 9094 . . . . . . . . . . . 12  |-  ( ( N  e.  ZZ  /\  ( k  +  1 )  e.  ZZ )  ->  ( N  <_ 
( k  +  1 )  <->  ( N  < 
( k  +  1 )  \/  N  =  ( k  +  1 ) ) ) )
3527, 33, 34syl2an 287 . . . . . . . . . . 11  |-  ( ( N  e.  NN  /\  k  e.  NN0 )  -> 
( N  <_  (
k  +  1 )  <-> 
( N  <  (
k  +  1 )  \/  N  =  ( k  +  1 ) ) ) )
36 nnnn0 8977 . . . . . . . . . . . . . 14  |-  ( N  e.  NN  ->  N  e.  NN0 )
37 nn0leltp1 9110 . . . . . . . . . . . . . 14  |-  ( ( N  e.  NN0  /\  k  e.  NN0 )  -> 
( N  <_  k  <->  N  <  ( k  +  1 ) ) )
3836, 37sylan 281 . . . . . . . . . . . . 13  |-  ( ( N  e.  NN  /\  k  e.  NN0 )  -> 
( N  <_  k  <->  N  <  ( k  +  1 ) ) )
39 nn0p1nn 9009 . . . . . . . . . . . . . . . . . . 19  |-  ( k  e.  NN0  ->  ( k  +  1 )  e.  NN )
40 nnmulcl 8734 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( ( ! `  k )  /  N
)  e.  NN  /\  ( k  +  1 )  e.  NN )  ->  ( ( ( ! `  k )  /  N )  x.  ( k  +  1 ) )  e.  NN )
4139, 40sylan2 284 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ( ! `  k )  /  N
)  e.  NN  /\  k  e.  NN0 )  -> 
( ( ( ! `
 k )  /  N )  x.  (
k  +  1 ) )  e.  NN )
4241expcom 115 . . . . . . . . . . . . . . . . 17  |-  ( k  e.  NN0  ->  ( ( ( ! `  k
)  /  N )  e.  NN  ->  (
( ( ! `  k )  /  N
)  x.  ( k  +  1 ) )  e.  NN ) )
4342adantl 275 . . . . . . . . . . . . . . . 16  |-  ( ( N  e.  NN  /\  k  e.  NN0 )  -> 
( ( ( ! `
 k )  /  N )  e.  NN  ->  ( ( ( ! `
 k )  /  N )  x.  (
k  +  1 ) )  e.  NN ) )
44 faccl 10474 . . . . . . . . . . . . . . . . . . . 20  |-  ( k  e.  NN0  ->  ( ! `
 k )  e.  NN )
4544nncnd 8727 . . . . . . . . . . . . . . . . . . 19  |-  ( k  e.  NN0  ->  ( ! `
 k )  e.  CC )
4645adantl 275 . . . . . . . . . . . . . . . . . 18  |-  ( ( N  e.  NN  /\  k  e.  NN0 )  -> 
( ! `  k
)  e.  CC )
4732nn0cnd 9025 . . . . . . . . . . . . . . . . . . 19  |-  ( k  e.  NN0  ->  ( k  +  1 )  e.  CC )
4847adantl 275 . . . . . . . . . . . . . . . . . 18  |-  ( ( N  e.  NN  /\  k  e.  NN0 )  -> 
( k  +  1 )  e.  CC )
49 nncn 8721 . . . . . . . . . . . . . . . . . . 19  |-  ( N  e.  NN  ->  N  e.  CC )
5049adantr 274 . . . . . . . . . . . . . . . . . 18  |-  ( ( N  e.  NN  /\  k  e.  NN0 )  ->  N  e.  CC )
51 nnap0 8742 . . . . . . . . . . . . . . . . . . 19  |-  ( N  e.  NN  ->  N #  0 )
5251adantr 274 . . . . . . . . . . . . . . . . . 18  |-  ( ( N  e.  NN  /\  k  e.  NN0 )  ->  N #  0 )
5346, 48, 50, 52div23apd 8581 . . . . . . . . . . . . . . . . 17  |-  ( ( N  e.  NN  /\  k  e.  NN0 )  -> 
( ( ( ! `
 k )  x.  ( k  +  1 ) )  /  N
)  =  ( ( ( ! `  k
)  /  N )  x.  ( k  +  1 ) ) )
5453eleq1d 2206 . . . . . . . . . . . . . . . 16  |-  ( ( N  e.  NN  /\  k  e.  NN0 )  -> 
( ( ( ( ! `  k )  x.  ( k  +  1 ) )  /  N )  e.  NN  <->  ( ( ( ! `  k )  /  N
)  x.  ( k  +  1 ) )  e.  NN ) )
5543, 54sylibrd 168 . . . . . . . . . . . . . . 15  |-  ( ( N  e.  NN  /\  k  e.  NN0 )  -> 
( ( ( ! `
 k )  /  N )  e.  NN  ->  ( ( ( ! `
 k )  x.  ( k  +  1 ) )  /  N
)  e.  NN ) )
5655imim2d 54 . . . . . . . . . . . . . 14  |-  ( ( N  e.  NN  /\  k  e.  NN0 )  -> 
( ( N  <_ 
k  ->  ( ( ! `  k )  /  N )  e.  NN )  ->  ( N  <_ 
k  ->  ( (
( ! `  k
)  x.  ( k  +  1 ) )  /  N )  e.  NN ) ) )
5756com23 78 . . . . . . . . . . . . 13  |-  ( ( N  e.  NN  /\  k  e.  NN0 )  -> 
( N  <_  k  ->  ( ( N  <_ 
k  ->  ( ( ! `  k )  /  N )  e.  NN )  ->  ( ( ( ! `  k )  x.  ( k  +  1 ) )  /  N )  e.  NN ) ) )
5838, 57sylbird 169 . . . . . . . . . . . 12  |-  ( ( N  e.  NN  /\  k  e.  NN0 )  -> 
( N  <  (
k  +  1 )  ->  ( ( N  <_  k  ->  (
( ! `  k
)  /  N )  e.  NN )  -> 
( ( ( ! `
 k )  x.  ( k  +  1 ) )  /  N
)  e.  NN ) ) )
5946, 50, 52divcanap4d 8549 . . . . . . . . . . . . . . 15  |-  ( ( N  e.  NN  /\  k  e.  NN0 )  -> 
( ( ( ! `
 k )  x.  N )  /  N
)  =  ( ! `
 k ) )
6044adantl 275 . . . . . . . . . . . . . . 15  |-  ( ( N  e.  NN  /\  k  e.  NN0 )  -> 
( ! `  k
)  e.  NN )
6159, 60eqeltrd 2214 . . . . . . . . . . . . . 14  |-  ( ( N  e.  NN  /\  k  e.  NN0 )  -> 
( ( ( ! `
 k )  x.  N )  /  N
)  e.  NN )
62 oveq2 5775 . . . . . . . . . . . . . . . 16  |-  ( N  =  ( k  +  1 )  ->  (
( ! `  k
)  x.  N )  =  ( ( ! `
 k )  x.  ( k  +  1 ) ) )
6362oveq1d 5782 . . . . . . . . . . . . . . 15  |-  ( N  =  ( k  +  1 )  ->  (
( ( ! `  k )  x.  N
)  /  N )  =  ( ( ( ! `  k )  x.  ( k  +  1 ) )  /  N ) )
6463eleq1d 2206 . . . . . . . . . . . . . 14  |-  ( N  =  ( k  +  1 )  ->  (
( ( ( ! `
 k )  x.  N )  /  N
)  e.  NN  <->  ( (
( ! `  k
)  x.  ( k  +  1 ) )  /  N )  e.  NN ) )
6561, 64syl5ibcom 154 . . . . . . . . . . . . 13  |-  ( ( N  e.  NN  /\  k  e.  NN0 )  -> 
( N  =  ( k  +  1 )  ->  ( ( ( ! `  k )  x.  ( k  +  1 ) )  /  N )  e.  NN ) )
6665a1dd 48 . . . . . . . . . . . 12  |-  ( ( N  e.  NN  /\  k  e.  NN0 )  -> 
( N  =  ( k  +  1 )  ->  ( ( N  <_  k  ->  (
( ! `  k
)  /  N )  e.  NN )  -> 
( ( ( ! `
 k )  x.  ( k  +  1 ) )  /  N
)  e.  NN ) ) )
6758, 66jaod 706 . . . . . . . . . . 11  |-  ( ( N  e.  NN  /\  k  e.  NN0 )  -> 
( ( N  < 
( k  +  1 )  \/  N  =  ( k  +  1 ) )  ->  (
( N  <_  k  ->  ( ( ! `  k )  /  N
)  e.  NN )  ->  ( ( ( ! `  k )  x.  ( k  +  1 ) )  /  N )  e.  NN ) ) )
6835, 67sylbid 149 . . . . . . . . . 10  |-  ( ( N  e.  NN  /\  k  e.  NN0 )  -> 
( N  <_  (
k  +  1 )  ->  ( ( N  <_  k  ->  (
( ! `  k
)  /  N )  e.  NN )  -> 
( ( ( ! `
 k )  x.  ( k  +  1 ) )  /  N
)  e.  NN ) ) )
6968ex 114 . . . . . . . . 9  |-  ( N  e.  NN  ->  (
k  e.  NN0  ->  ( N  <_  ( k  +  1 )  -> 
( ( N  <_ 
k  ->  ( ( ! `  k )  /  N )  e.  NN )  ->  ( ( ( ! `  k )  x.  ( k  +  1 ) )  /  N )  e.  NN ) ) ) )
7069com34 83 . . . . . . . 8  |-  ( N  e.  NN  ->  (
k  e.  NN0  ->  ( ( N  <_  k  ->  ( ( ! `  k )  /  N
)  e.  NN )  ->  ( N  <_ 
( k  +  1 )  ->  ( (
( ! `  k
)  x.  ( k  +  1 ) )  /  N )  e.  NN ) ) ) )
7170com12 30 . . . . . . 7  |-  ( k  e.  NN0  ->  ( N  e.  NN  ->  (
( N  <_  k  ->  ( ( ! `  k )  /  N
)  e.  NN )  ->  ( N  <_ 
( k  +  1 )  ->  ( (
( ! `  k
)  x.  ( k  +  1 ) )  /  N )  e.  NN ) ) ) )
7271imp4d 349 . . . . . 6  |-  ( k  e.  NN0  ->  ( ( N  e.  NN  /\  ( ( N  <_ 
k  ->  ( ( ! `  k )  /  N )  e.  NN )  /\  N  <_  (
k  +  1 ) ) )  ->  (
( ( ! `  k )  x.  (
k  +  1 ) )  /  N )  e.  NN ) )
73 facp1 10469 . . . . . . . 8  |-  ( k  e.  NN0  ->  ( ! `
 ( k  +  1 ) )  =  ( ( ! `  k )  x.  (
k  +  1 ) ) )
7473oveq1d 5782 . . . . . . 7  |-  ( k  e.  NN0  ->  ( ( ! `  ( k  +  1 ) )  /  N )  =  ( ( ( ! `
 k )  x.  ( k  +  1 ) )  /  N
) )
7574eleq1d 2206 . . . . . 6  |-  ( k  e.  NN0  ->  ( ( ( ! `  (
k  +  1 ) )  /  N )  e.  NN  <->  ( (
( ! `  k
)  x.  ( k  +  1 ) )  /  N )  e.  NN ) )
7672, 75sylibrd 168 . . . . 5  |-  ( k  e.  NN0  ->  ( ( N  e.  NN  /\  ( ( N  <_ 
k  ->  ( ( ! `  k )  /  N )  e.  NN )  /\  N  <_  (
k  +  1 ) ) )  ->  (
( ! `  (
k  +  1 ) )  /  N )  e.  NN ) )
7776exp4d 366 . . . 4  |-  ( k  e.  NN0  ->  ( N  e.  NN  ->  (
( N  <_  k  ->  ( ( ! `  k )  /  N
)  e.  NN )  ->  ( N  <_ 
( k  +  1 )  ->  ( ( ! `  ( k  +  1 ) )  /  N )  e.  NN ) ) ) )
7877a2d 26 . . 3  |-  ( k  e.  NN0  ->  ( ( N  e.  NN  ->  ( N  <_  k  ->  ( ( ! `  k
)  /  N )  e.  NN ) )  ->  ( N  e.  NN  ->  ( N  <_  ( k  +  1 )  ->  ( ( ! `  ( k  +  1 ) )  /  N )  e.  NN ) ) ) )
796, 12, 18, 24, 31, 78nn0ind 9158 . 2  |-  ( M  e.  NN0  ->  ( N  e.  NN  ->  ( N  <_  M  ->  (
( ! `  M
)  /  N )  e.  NN ) ) )
80793imp 1175 1  |-  ( ( M  e.  NN0  /\  N  e.  NN  /\  N  <_  M )  ->  (
( ! `  M
)  /  N )  e.  NN )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 103    <-> wb 104    \/ wo 697    /\ w3a 962    = wceq 1331    e. wcel 1480   class class class wbr 3924   ` cfv 5118  (class class class)co 5767   CCcc 7611   0cc0 7613   1c1 7614    + caddc 7616    x. cmul 7618    < clt 7793    <_ cle 7794   # cap 8336    / cdiv 8425   NNcn 8713   NN0cn0 8970   ZZcz 9047   !cfa 10464
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 603  ax-in2 604  ax-io 698  ax-5 1423  ax-7 1424  ax-gen 1425  ax-ie1 1469  ax-ie2 1470  ax-8 1482  ax-10 1483  ax-11 1484  ax-i12 1485  ax-bndl 1486  ax-4 1487  ax-13 1491  ax-14 1492  ax-17 1506  ax-i9 1510  ax-ial 1514  ax-i5r 1515  ax-ext 2119  ax-coll 4038  ax-sep 4041  ax-nul 4049  ax-pow 4093  ax-pr 4126  ax-un 4350  ax-setind 4447  ax-iinf 4497  ax-cnex 7704  ax-resscn 7705  ax-1cn 7706  ax-1re 7707  ax-icn 7708  ax-addcl 7709  ax-addrcl 7710  ax-mulcl 7711  ax-mulrcl 7712  ax-addcom 7713  ax-mulcom 7714  ax-addass 7715  ax-mulass 7716  ax-distr 7717  ax-i2m1 7718  ax-0lt1 7719  ax-1rid 7720  ax-0id 7721  ax-rnegex 7722  ax-precex 7723  ax-cnre 7724  ax-pre-ltirr 7725  ax-pre-ltwlin 7726  ax-pre-lttrn 7727  ax-pre-apti 7728  ax-pre-ltadd 7729  ax-pre-mulgt0 7730  ax-pre-mulext 7731
This theorem depends on definitions:  df-bi 116  df-3or 963  df-3an 964  df-tru 1334  df-fal 1337  df-nf 1437  df-sb 1736  df-eu 2000  df-mo 2001  df-clab 2124  df-cleq 2130  df-clel 2133  df-nfc 2268  df-ne 2307  df-nel 2402  df-ral 2419  df-rex 2420  df-reu 2421  df-rmo 2422  df-rab 2423  df-v 2683  df-sbc 2905  df-csb 2999  df-dif 3068  df-un 3070  df-in 3072  df-ss 3079  df-nul 3359  df-pw 3507  df-sn 3528  df-pr 3529  df-op 3531  df-uni 3732  df-int 3767  df-iun 3810  df-br 3925  df-opab 3985  df-mpt 3986  df-tr 4022  df-id 4210  df-po 4213  df-iso 4214  df-iord 4283  df-on 4285  df-ilim 4286  df-suc 4288  df-iom 4500  df-xp 4540  df-rel 4541  df-cnv 4542  df-co 4543  df-dm 4544  df-rn 4545  df-res 4546  df-ima 4547  df-iota 5083  df-fun 5120  df-fn 5121  df-f 5122  df-f1 5123  df-fo 5124  df-f1o 5125  df-fv 5126  df-riota 5723  df-ov 5770  df-oprab 5771  df-mpo 5772  df-1st 6031  df-2nd 6032  df-recs 6195  df-frec 6281  df-pnf 7795  df-mnf 7796  df-xr 7797  df-ltxr 7798  df-le 7799  df-sub 7928  df-neg 7929  df-reap 8330  df-ap 8337  df-div 8426  df-inn 8714  df-n0 8971  df-z 9048  df-uz 9320  df-seqfrec 10212  df-fac 10465
This theorem is referenced by:  facndiv  10478  eirraplem  11472
  Copyright terms: Public domain W3C validator