ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  facdiv Unicode version

Theorem facdiv 10424
Description: A positive integer divides the factorial of an equal or larger number. (Contributed by NM, 2-May-2005.)
Assertion
Ref Expression
facdiv  |-  ( ( M  e.  NN0  /\  N  e.  NN  /\  N  <_  M )  ->  (
( ! `  M
)  /  N )  e.  NN )

Proof of Theorem facdiv
Dummy variables  j  k are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 breq2 3901 . . . . 5  |-  ( j  =  0  ->  ( N  <_  j  <->  N  <_  0 ) )
2 fveq2 5387 . . . . . . 7  |-  ( j  =  0  ->  ( ! `  j )  =  ( ! ` 
0 ) )
32oveq1d 5755 . . . . . 6  |-  ( j  =  0  ->  (
( ! `  j
)  /  N )  =  ( ( ! `
 0 )  /  N ) )
43eleq1d 2184 . . . . 5  |-  ( j  =  0  ->  (
( ( ! `  j )  /  N
)  e.  NN  <->  ( ( ! `  0 )  /  N )  e.  NN ) )
51, 4imbi12d 233 . . . 4  |-  ( j  =  0  ->  (
( N  <_  j  ->  ( ( ! `  j )  /  N
)  e.  NN )  <-> 
( N  <_  0  ->  ( ( ! ` 
0 )  /  N
)  e.  NN ) ) )
65imbi2d 229 . . 3  |-  ( j  =  0  ->  (
( N  e.  NN  ->  ( N  <_  j  ->  ( ( ! `  j )  /  N
)  e.  NN ) )  <->  ( N  e.  NN  ->  ( N  <_  0  ->  ( ( ! `  0 )  /  N )  e.  NN ) ) ) )
7 breq2 3901 . . . . 5  |-  ( j  =  k  ->  ( N  <_  j  <->  N  <_  k ) )
8 fveq2 5387 . . . . . . 7  |-  ( j  =  k  ->  ( ! `  j )  =  ( ! `  k ) )
98oveq1d 5755 . . . . . 6  |-  ( j  =  k  ->  (
( ! `  j
)  /  N )  =  ( ( ! `
 k )  /  N ) )
109eleq1d 2184 . . . . 5  |-  ( j  =  k  ->  (
( ( ! `  j )  /  N
)  e.  NN  <->  ( ( ! `  k )  /  N )  e.  NN ) )
117, 10imbi12d 233 . . . 4  |-  ( j  =  k  ->  (
( N  <_  j  ->  ( ( ! `  j )  /  N
)  e.  NN )  <-> 
( N  <_  k  ->  ( ( ! `  k )  /  N
)  e.  NN ) ) )
1211imbi2d 229 . . 3  |-  ( j  =  k  ->  (
( N  e.  NN  ->  ( N  <_  j  ->  ( ( ! `  j )  /  N
)  e.  NN ) )  <->  ( N  e.  NN  ->  ( N  <_  k  ->  ( ( ! `  k )  /  N )  e.  NN ) ) ) )
13 breq2 3901 . . . . 5  |-  ( j  =  ( k  +  1 )  ->  ( N  <_  j  <->  N  <_  ( k  +  1 ) ) )
14 fveq2 5387 . . . . . . 7  |-  ( j  =  ( k  +  1 )  ->  ( ! `  j )  =  ( ! `  ( k  +  1 ) ) )
1514oveq1d 5755 . . . . . 6  |-  ( j  =  ( k  +  1 )  ->  (
( ! `  j
)  /  N )  =  ( ( ! `
 ( k  +  1 ) )  /  N ) )
1615eleq1d 2184 . . . . 5  |-  ( j  =  ( k  +  1 )  ->  (
( ( ! `  j )  /  N
)  e.  NN  <->  ( ( ! `  ( k  +  1 ) )  /  N )  e.  NN ) )
1713, 16imbi12d 233 . . . 4  |-  ( j  =  ( k  +  1 )  ->  (
( N  <_  j  ->  ( ( ! `  j )  /  N
)  e.  NN )  <-> 
( N  <_  (
k  +  1 )  ->  ( ( ! `
 ( k  +  1 ) )  /  N )  e.  NN ) ) )
1817imbi2d 229 . . 3  |-  ( j  =  ( k  +  1 )  ->  (
( N  e.  NN  ->  ( N  <_  j  ->  ( ( ! `  j )  /  N
)  e.  NN ) )  <->  ( N  e.  NN  ->  ( N  <_  ( k  +  1 )  ->  ( ( ! `  ( k  +  1 ) )  /  N )  e.  NN ) ) ) )
19 breq2 3901 . . . . 5  |-  ( j  =  M  ->  ( N  <_  j  <->  N  <_  M ) )
20 fveq2 5387 . . . . . . 7  |-  ( j  =  M  ->  ( ! `  j )  =  ( ! `  M ) )
2120oveq1d 5755 . . . . . 6  |-  ( j  =  M  ->  (
( ! `  j
)  /  N )  =  ( ( ! `
 M )  /  N ) )
2221eleq1d 2184 . . . . 5  |-  ( j  =  M  ->  (
( ( ! `  j )  /  N
)  e.  NN  <->  ( ( ! `  M )  /  N )  e.  NN ) )
2319, 22imbi12d 233 . . . 4  |-  ( j  =  M  ->  (
( N  <_  j  ->  ( ( ! `  j )  /  N
)  e.  NN )  <-> 
( N  <_  M  ->  ( ( ! `  M )  /  N
)  e.  NN ) ) )
2423imbi2d 229 . . 3  |-  ( j  =  M  ->  (
( N  e.  NN  ->  ( N  <_  j  ->  ( ( ! `  j )  /  N
)  e.  NN ) )  <->  ( N  e.  NN  ->  ( N  <_  M  ->  ( ( ! `  M )  /  N )  e.  NN ) ) ) )
25 nngt0 8702 . . . . 5  |-  ( N  e.  NN  ->  0  <  N )
26 0z 9016 . . . . . 6  |-  0  e.  ZZ
27 nnz 9024 . . . . . 6  |-  ( N  e.  NN  ->  N  e.  ZZ )
28 zltnle 9051 . . . . . 6  |-  ( ( 0  e.  ZZ  /\  N  e.  ZZ )  ->  ( 0  <  N  <->  -.  N  <_  0 ) )
2926, 27, 28sylancr 408 . . . . 5  |-  ( N  e.  NN  ->  (
0  <  N  <->  -.  N  <_  0 ) )
3025, 29mpbid 146 . . . 4  |-  ( N  e.  NN  ->  -.  N  <_  0 )
3130pm2.21d 591 . . 3  |-  ( N  e.  NN  ->  ( N  <_  0  ->  (
( ! `  0
)  /  N )  e.  NN ) )
32 peano2nn0 8968 . . . . . . . . . . . . 13  |-  ( k  e.  NN0  ->  ( k  +  1 )  e. 
NN0 )
3332nn0zd 9122 . . . . . . . . . . . 12  |-  ( k  e.  NN0  ->  ( k  +  1 )  e.  ZZ )
34 zleloe 9052 . . . . . . . . . . . 12  |-  ( ( N  e.  ZZ  /\  ( k  +  1 )  e.  ZZ )  ->  ( N  <_ 
( k  +  1 )  <->  ( N  < 
( k  +  1 )  \/  N  =  ( k  +  1 ) ) ) )
3527, 33, 34syl2an 285 . . . . . . . . . . 11  |-  ( ( N  e.  NN  /\  k  e.  NN0 )  -> 
( N  <_  (
k  +  1 )  <-> 
( N  <  (
k  +  1 )  \/  N  =  ( k  +  1 ) ) ) )
36 nnnn0 8935 . . . . . . . . . . . . . 14  |-  ( N  e.  NN  ->  N  e.  NN0 )
37 nn0leltp1 9068 . . . . . . . . . . . . . 14  |-  ( ( N  e.  NN0  /\  k  e.  NN0 )  -> 
( N  <_  k  <->  N  <  ( k  +  1 ) ) )
3836, 37sylan 279 . . . . . . . . . . . . 13  |-  ( ( N  e.  NN  /\  k  e.  NN0 )  -> 
( N  <_  k  <->  N  <  ( k  +  1 ) ) )
39 nn0p1nn 8967 . . . . . . . . . . . . . . . . . . 19  |-  ( k  e.  NN0  ->  ( k  +  1 )  e.  NN )
40 nnmulcl 8698 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( ( ! `  k )  /  N
)  e.  NN  /\  ( k  +  1 )  e.  NN )  ->  ( ( ( ! `  k )  /  N )  x.  ( k  +  1 ) )  e.  NN )
4139, 40sylan2 282 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ( ! `  k )  /  N
)  e.  NN  /\  k  e.  NN0 )  -> 
( ( ( ! `
 k )  /  N )  x.  (
k  +  1 ) )  e.  NN )
4241expcom 115 . . . . . . . . . . . . . . . . 17  |-  ( k  e.  NN0  ->  ( ( ( ! `  k
)  /  N )  e.  NN  ->  (
( ( ! `  k )  /  N
)  x.  ( k  +  1 ) )  e.  NN ) )
4342adantl 273 . . . . . . . . . . . . . . . 16  |-  ( ( N  e.  NN  /\  k  e.  NN0 )  -> 
( ( ( ! `
 k )  /  N )  e.  NN  ->  ( ( ( ! `
 k )  /  N )  x.  (
k  +  1 ) )  e.  NN ) )
44 faccl 10421 . . . . . . . . . . . . . . . . . . . 20  |-  ( k  e.  NN0  ->  ( ! `
 k )  e.  NN )
4544nncnd 8691 . . . . . . . . . . . . . . . . . . 19  |-  ( k  e.  NN0  ->  ( ! `
 k )  e.  CC )
4645adantl 273 . . . . . . . . . . . . . . . . . 18  |-  ( ( N  e.  NN  /\  k  e.  NN0 )  -> 
( ! `  k
)  e.  CC )
4732nn0cnd 8983 . . . . . . . . . . . . . . . . . . 19  |-  ( k  e.  NN0  ->  ( k  +  1 )  e.  CC )
4847adantl 273 . . . . . . . . . . . . . . . . . 18  |-  ( ( N  e.  NN  /\  k  e.  NN0 )  -> 
( k  +  1 )  e.  CC )
49 nncn 8685 . . . . . . . . . . . . . . . . . . 19  |-  ( N  e.  NN  ->  N  e.  CC )
5049adantr 272 . . . . . . . . . . . . . . . . . 18  |-  ( ( N  e.  NN  /\  k  e.  NN0 )  ->  N  e.  CC )
51 nnap0 8706 . . . . . . . . . . . . . . . . . . 19  |-  ( N  e.  NN  ->  N #  0 )
5251adantr 272 . . . . . . . . . . . . . . . . . 18  |-  ( ( N  e.  NN  /\  k  e.  NN0 )  ->  N #  0 )
5346, 48, 50, 52div23apd 8548 . . . . . . . . . . . . . . . . 17  |-  ( ( N  e.  NN  /\  k  e.  NN0 )  -> 
( ( ( ! `
 k )  x.  ( k  +  1 ) )  /  N
)  =  ( ( ( ! `  k
)  /  N )  x.  ( k  +  1 ) ) )
5453eleq1d 2184 . . . . . . . . . . . . . . . 16  |-  ( ( N  e.  NN  /\  k  e.  NN0 )  -> 
( ( ( ( ! `  k )  x.  ( k  +  1 ) )  /  N )  e.  NN  <->  ( ( ( ! `  k )  /  N
)  x.  ( k  +  1 ) )  e.  NN ) )
5543, 54sylibrd 168 . . . . . . . . . . . . . . 15  |-  ( ( N  e.  NN  /\  k  e.  NN0 )  -> 
( ( ( ! `
 k )  /  N )  e.  NN  ->  ( ( ( ! `
 k )  x.  ( k  +  1 ) )  /  N
)  e.  NN ) )
5655imim2d 54 . . . . . . . . . . . . . 14  |-  ( ( N  e.  NN  /\  k  e.  NN0 )  -> 
( ( N  <_ 
k  ->  ( ( ! `  k )  /  N )  e.  NN )  ->  ( N  <_ 
k  ->  ( (
( ! `  k
)  x.  ( k  +  1 ) )  /  N )  e.  NN ) ) )
5756com23 78 . . . . . . . . . . . . 13  |-  ( ( N  e.  NN  /\  k  e.  NN0 )  -> 
( N  <_  k  ->  ( ( N  <_ 
k  ->  ( ( ! `  k )  /  N )  e.  NN )  ->  ( ( ( ! `  k )  x.  ( k  +  1 ) )  /  N )  e.  NN ) ) )
5838, 57sylbird 169 . . . . . . . . . . . 12  |-  ( ( N  e.  NN  /\  k  e.  NN0 )  -> 
( N  <  (
k  +  1 )  ->  ( ( N  <_  k  ->  (
( ! `  k
)  /  N )  e.  NN )  -> 
( ( ( ! `
 k )  x.  ( k  +  1 ) )  /  N
)  e.  NN ) ) )
5946, 50, 52divcanap4d 8516 . . . . . . . . . . . . . . 15  |-  ( ( N  e.  NN  /\  k  e.  NN0 )  -> 
( ( ( ! `
 k )  x.  N )  /  N
)  =  ( ! `
 k ) )
6044adantl 273 . . . . . . . . . . . . . . 15  |-  ( ( N  e.  NN  /\  k  e.  NN0 )  -> 
( ! `  k
)  e.  NN )
6159, 60eqeltrd 2192 . . . . . . . . . . . . . 14  |-  ( ( N  e.  NN  /\  k  e.  NN0 )  -> 
( ( ( ! `
 k )  x.  N )  /  N
)  e.  NN )
62 oveq2 5748 . . . . . . . . . . . . . . . 16  |-  ( N  =  ( k  +  1 )  ->  (
( ! `  k
)  x.  N )  =  ( ( ! `
 k )  x.  ( k  +  1 ) ) )
6362oveq1d 5755 . . . . . . . . . . . . . . 15  |-  ( N  =  ( k  +  1 )  ->  (
( ( ! `  k )  x.  N
)  /  N )  =  ( ( ( ! `  k )  x.  ( k  +  1 ) )  /  N ) )
6463eleq1d 2184 . . . . . . . . . . . . . 14  |-  ( N  =  ( k  +  1 )  ->  (
( ( ( ! `
 k )  x.  N )  /  N
)  e.  NN  <->  ( (
( ! `  k
)  x.  ( k  +  1 ) )  /  N )  e.  NN ) )
6561, 64syl5ibcom 154 . . . . . . . . . . . . 13  |-  ( ( N  e.  NN  /\  k  e.  NN0 )  -> 
( N  =  ( k  +  1 )  ->  ( ( ( ! `  k )  x.  ( k  +  1 ) )  /  N )  e.  NN ) )
6665a1dd 48 . . . . . . . . . . . 12  |-  ( ( N  e.  NN  /\  k  e.  NN0 )  -> 
( N  =  ( k  +  1 )  ->  ( ( N  <_  k  ->  (
( ! `  k
)  /  N )  e.  NN )  -> 
( ( ( ! `
 k )  x.  ( k  +  1 ) )  /  N
)  e.  NN ) ) )
6758, 66jaod 689 . . . . . . . . . . 11  |-  ( ( N  e.  NN  /\  k  e.  NN0 )  -> 
( ( N  < 
( k  +  1 )  \/  N  =  ( k  +  1 ) )  ->  (
( N  <_  k  ->  ( ( ! `  k )  /  N
)  e.  NN )  ->  ( ( ( ! `  k )  x.  ( k  +  1 ) )  /  N )  e.  NN ) ) )
6835, 67sylbid 149 . . . . . . . . . 10  |-  ( ( N  e.  NN  /\  k  e.  NN0 )  -> 
( N  <_  (
k  +  1 )  ->  ( ( N  <_  k  ->  (
( ! `  k
)  /  N )  e.  NN )  -> 
( ( ( ! `
 k )  x.  ( k  +  1 ) )  /  N
)  e.  NN ) ) )
6968ex 114 . . . . . . . . 9  |-  ( N  e.  NN  ->  (
k  e.  NN0  ->  ( N  <_  ( k  +  1 )  -> 
( ( N  <_ 
k  ->  ( ( ! `  k )  /  N )  e.  NN )  ->  ( ( ( ! `  k )  x.  ( k  +  1 ) )  /  N )  e.  NN ) ) ) )
7069com34 83 . . . . . . . 8  |-  ( N  e.  NN  ->  (
k  e.  NN0  ->  ( ( N  <_  k  ->  ( ( ! `  k )  /  N
)  e.  NN )  ->  ( N  <_ 
( k  +  1 )  ->  ( (
( ! `  k
)  x.  ( k  +  1 ) )  /  N )  e.  NN ) ) ) )
7170com12 30 . . . . . . 7  |-  ( k  e.  NN0  ->  ( N  e.  NN  ->  (
( N  <_  k  ->  ( ( ! `  k )  /  N
)  e.  NN )  ->  ( N  <_ 
( k  +  1 )  ->  ( (
( ! `  k
)  x.  ( k  +  1 ) )  /  N )  e.  NN ) ) ) )
7271imp4d 347 . . . . . 6  |-  ( k  e.  NN0  ->  ( ( N  e.  NN  /\  ( ( N  <_ 
k  ->  ( ( ! `  k )  /  N )  e.  NN )  /\  N  <_  (
k  +  1 ) ) )  ->  (
( ( ! `  k )  x.  (
k  +  1 ) )  /  N )  e.  NN ) )
73 facp1 10416 . . . . . . . 8  |-  ( k  e.  NN0  ->  ( ! `
 ( k  +  1 ) )  =  ( ( ! `  k )  x.  (
k  +  1 ) ) )
7473oveq1d 5755 . . . . . . 7  |-  ( k  e.  NN0  ->  ( ( ! `  ( k  +  1 ) )  /  N )  =  ( ( ( ! `
 k )  x.  ( k  +  1 ) )  /  N
) )
7574eleq1d 2184 . . . . . 6  |-  ( k  e.  NN0  ->  ( ( ( ! `  (
k  +  1 ) )  /  N )  e.  NN  <->  ( (
( ! `  k
)  x.  ( k  +  1 ) )  /  N )  e.  NN ) )
7672, 75sylibrd 168 . . . . 5  |-  ( k  e.  NN0  ->  ( ( N  e.  NN  /\  ( ( N  <_ 
k  ->  ( ( ! `  k )  /  N )  e.  NN )  /\  N  <_  (
k  +  1 ) ) )  ->  (
( ! `  (
k  +  1 ) )  /  N )  e.  NN ) )
7776exp4d 364 . . . 4  |-  ( k  e.  NN0  ->  ( N  e.  NN  ->  (
( N  <_  k  ->  ( ( ! `  k )  /  N
)  e.  NN )  ->  ( N  <_ 
( k  +  1 )  ->  ( ( ! `  ( k  +  1 ) )  /  N )  e.  NN ) ) ) )
7877a2d 26 . . 3  |-  ( k  e.  NN0  ->  ( ( N  e.  NN  ->  ( N  <_  k  ->  ( ( ! `  k
)  /  N )  e.  NN ) )  ->  ( N  e.  NN  ->  ( N  <_  ( k  +  1 )  ->  ( ( ! `  ( k  +  1 ) )  /  N )  e.  NN ) ) ) )
796, 12, 18, 24, 31, 78nn0ind 9116 . 2  |-  ( M  e.  NN0  ->  ( N  e.  NN  ->  ( N  <_  M  ->  (
( ! `  M
)  /  N )  e.  NN ) ) )
80793imp 1158 1  |-  ( ( M  e.  NN0  /\  N  e.  NN  /\  N  <_  M )  ->  (
( ! `  M
)  /  N )  e.  NN )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 103    <-> wb 104    \/ wo 680    /\ w3a 945    = wceq 1314    e. wcel 1463   class class class wbr 3897   ` cfv 5091  (class class class)co 5740   CCcc 7582   0cc0 7584   1c1 7585    + caddc 7587    x. cmul 7589    < clt 7764    <_ cle 7765   # cap 8306    / cdiv 8392   NNcn 8677   NN0cn0 8928   ZZcz 9005   !cfa 10411
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 586  ax-in2 587  ax-io 681  ax-5 1406  ax-7 1407  ax-gen 1408  ax-ie1 1452  ax-ie2 1453  ax-8 1465  ax-10 1466  ax-11 1467  ax-i12 1468  ax-bndl 1469  ax-4 1470  ax-13 1474  ax-14 1475  ax-17 1489  ax-i9 1493  ax-ial 1497  ax-i5r 1498  ax-ext 2097  ax-coll 4011  ax-sep 4014  ax-nul 4022  ax-pow 4066  ax-pr 4099  ax-un 4323  ax-setind 4420  ax-iinf 4470  ax-cnex 7675  ax-resscn 7676  ax-1cn 7677  ax-1re 7678  ax-icn 7679  ax-addcl 7680  ax-addrcl 7681  ax-mulcl 7682  ax-mulrcl 7683  ax-addcom 7684  ax-mulcom 7685  ax-addass 7686  ax-mulass 7687  ax-distr 7688  ax-i2m1 7689  ax-0lt1 7690  ax-1rid 7691  ax-0id 7692  ax-rnegex 7693  ax-precex 7694  ax-cnre 7695  ax-pre-ltirr 7696  ax-pre-ltwlin 7697  ax-pre-lttrn 7698  ax-pre-apti 7699  ax-pre-ltadd 7700  ax-pre-mulgt0 7701  ax-pre-mulext 7702
This theorem depends on definitions:  df-bi 116  df-3or 946  df-3an 947  df-tru 1317  df-fal 1320  df-nf 1420  df-sb 1719  df-eu 1978  df-mo 1979  df-clab 2102  df-cleq 2108  df-clel 2111  df-nfc 2245  df-ne 2284  df-nel 2379  df-ral 2396  df-rex 2397  df-reu 2398  df-rmo 2399  df-rab 2400  df-v 2660  df-sbc 2881  df-csb 2974  df-dif 3041  df-un 3043  df-in 3045  df-ss 3052  df-nul 3332  df-pw 3480  df-sn 3501  df-pr 3502  df-op 3504  df-uni 3705  df-int 3740  df-iun 3783  df-br 3898  df-opab 3958  df-mpt 3959  df-tr 3995  df-id 4183  df-po 4186  df-iso 4187  df-iord 4256  df-on 4258  df-ilim 4259  df-suc 4261  df-iom 4473  df-xp 4513  df-rel 4514  df-cnv 4515  df-co 4516  df-dm 4517  df-rn 4518  df-res 4519  df-ima 4520  df-iota 5056  df-fun 5093  df-fn 5094  df-f 5095  df-f1 5096  df-fo 5097  df-f1o 5098  df-fv 5099  df-riota 5696  df-ov 5743  df-oprab 5744  df-mpo 5745  df-1st 6004  df-2nd 6005  df-recs 6168  df-frec 6254  df-pnf 7766  df-mnf 7767  df-xr 7768  df-ltxr 7769  df-le 7770  df-sub 7899  df-neg 7900  df-reap 8300  df-ap 8307  df-div 8393  df-inn 8678  df-n0 8929  df-z 9006  df-uz 9276  df-seqfrec 10159  df-fac 10412
This theorem is referenced by:  facndiv  10425  eirraplem  11379
  Copyright terms: Public domain W3C validator