ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  issetid Unicode version

Theorem issetid 4831
Description: Two ways of expressing set existence. (Contributed by NM, 16-Feb-2008.) (Proof shortened by Andrew Salmon, 27-Aug-2011.) (Revised by Mario Carneiro, 26-Apr-2015.)
Assertion
Ref Expression
issetid  |-  ( A  e.  _V  <->  A  _I  A )

Proof of Theorem issetid
StepHypRef Expression
1 ididg 4830 . 2  |-  ( A  e.  _V  ->  A  _I  A )
2 reli 4806 . . 3  |-  Rel  _I
32brrelex1i 4717 . 2  |-  ( A  _I  A  ->  A  e.  _V )
41, 3impbii 126 1  |-  ( A  e.  _V  <->  A  _I  A )
Colors of variables: wff set class
Syntax hints:    <-> wb 105    e. wcel 2175   _Vcvv 2771   class class class wbr 4043    _I cid 4334
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1469  ax-7 1470  ax-gen 1471  ax-ie1 1515  ax-ie2 1516  ax-8 1526  ax-10 1527  ax-11 1528  ax-i12 1529  ax-bndl 1531  ax-4 1532  ax-17 1548  ax-i9 1552  ax-ial 1556  ax-i5r 1557  ax-14 2178  ax-ext 2186  ax-sep 4161  ax-pow 4217  ax-pr 4252
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1375  df-nf 1483  df-sb 1785  df-eu 2056  df-mo 2057  df-clab 2191  df-cleq 2197  df-clel 2200  df-nfc 2336  df-ral 2488  df-rex 2489  df-v 2773  df-un 3169  df-in 3171  df-ss 3178  df-pw 3617  df-sn 3638  df-pr 3639  df-op 3641  df-br 4044  df-opab 4105  df-id 4339  df-xp 4680  df-rel 4681
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator