ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  issetid Unicode version

Theorem issetid 4586
Description: Two ways of expressing set existence. (Contributed by NM, 16-Feb-2008.) (Proof shortened by Andrew Salmon, 27-Aug-2011.) (Revised by Mario Carneiro, 26-Apr-2015.)
Assertion
Ref Expression
issetid  |-  ( A  e.  _V  <->  A  _I  A )

Proof of Theorem issetid
StepHypRef Expression
1 ididg 4585 . 2  |-  ( A  e.  _V  ->  A  _I  A )
2 reli 4561 . . 3  |-  Rel  _I
32brrelexi 4476 . 2  |-  ( A  _I  A  ->  A  e.  _V )
41, 3impbii 124 1  |-  ( A  e.  _V  <->  A  _I  A )
Colors of variables: wff set class
Syntax hints:    <-> wb 103    e. wcel 1438   _Vcvv 2619   class class class wbr 3843    _I cid 4113
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-io 665  ax-5 1381  ax-7 1382  ax-gen 1383  ax-ie1 1427  ax-ie2 1428  ax-8 1440  ax-10 1441  ax-11 1442  ax-i12 1443  ax-bndl 1444  ax-4 1445  ax-14 1450  ax-17 1464  ax-i9 1468  ax-ial 1472  ax-i5r 1473  ax-ext 2070  ax-sep 3955  ax-pow 4007  ax-pr 4034
This theorem depends on definitions:  df-bi 115  df-3an 926  df-tru 1292  df-nf 1395  df-sb 1693  df-eu 1951  df-mo 1952  df-clab 2075  df-cleq 2081  df-clel 2084  df-nfc 2217  df-ral 2364  df-rex 2365  df-v 2621  df-un 3003  df-in 3005  df-ss 3012  df-pw 3429  df-sn 3450  df-pr 3451  df-op 3453  df-br 3844  df-opab 3898  df-id 4118  df-xp 4442  df-rel 4443
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator