ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  csbfvg Unicode version

Theorem csbfvg 5534
Description: Substitution for a function value. (Contributed by NM, 1-Jan-2006.)
Assertion
Ref Expression
csbfvg  |-  ( A  e.  C  ->  [_ A  /  x ]_ ( F `
 x )  =  ( F `  A
) )
Distinct variable group:    x, F
Allowed substitution hints:    A( x)    C( x)

Proof of Theorem csbfvg
StepHypRef Expression
1 csbfv2g 5533 . 2  |-  ( A  e.  C  ->  [_ A  /  x ]_ ( F `
 x )  =  ( F `  [_ A  /  x ]_ x ) )
2 csbvarg 3077 . . 3  |-  ( A  e.  C  ->  [_ A  /  x ]_ x  =  A )
32fveq2d 5500 . 2  |-  ( A  e.  C  ->  ( F `  [_ A  /  x ]_ x )  =  ( F `  A
) )
41, 3eqtrd 2203 1  |-  ( A  e.  C  ->  [_ A  /  x ]_ ( F `
 x )  =  ( F `  A
) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    = wceq 1348    e. wcel 2141   [_csb 3049   ` cfv 5198
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 704  ax-5 1440  ax-7 1441  ax-gen 1442  ax-ie1 1486  ax-ie2 1487  ax-8 1497  ax-10 1498  ax-11 1499  ax-i12 1500  ax-bndl 1502  ax-4 1503  ax-17 1519  ax-i9 1523  ax-ial 1527  ax-i5r 1528  ax-ext 2152
This theorem depends on definitions:  df-bi 116  df-3an 975  df-tru 1351  df-nf 1454  df-sb 1756  df-clab 2157  df-cleq 2163  df-clel 2166  df-nfc 2301  df-rex 2454  df-v 2732  df-sbc 2956  df-csb 3050  df-un 3125  df-sn 3589  df-pr 3590  df-op 3592  df-uni 3797  df-br 3990  df-iota 5160  df-fv 5206
This theorem is referenced by:  ixpsnval  6679
  Copyright terms: Public domain W3C validator