ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  csbfvg Unicode version

Theorem csbfvg 5524
Description: Substitution for a function value. (Contributed by NM, 1-Jan-2006.)
Assertion
Ref Expression
csbfvg  |-  ( A  e.  C  ->  [_ A  /  x ]_ ( F `
 x )  =  ( F `  A
) )
Distinct variable group:    x, F
Allowed substitution hints:    A( x)    C( x)

Proof of Theorem csbfvg
StepHypRef Expression
1 csbfv2g 5523 . 2  |-  ( A  e.  C  ->  [_ A  /  x ]_ ( F `
 x )  =  ( F `  [_ A  /  x ]_ x ) )
2 csbvarg 3073 . . 3  |-  ( A  e.  C  ->  [_ A  /  x ]_ x  =  A )
32fveq2d 5490 . 2  |-  ( A  e.  C  ->  ( F `  [_ A  /  x ]_ x )  =  ( F `  A
) )
41, 3eqtrd 2198 1  |-  ( A  e.  C  ->  [_ A  /  x ]_ ( F `
 x )  =  ( F `  A
) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    = wceq 1343    e. wcel 2136   [_csb 3045   ` cfv 5188
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 699  ax-5 1435  ax-7 1436  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-10 1493  ax-11 1494  ax-i12 1495  ax-bndl 1497  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522  ax-i5r 1523  ax-ext 2147
This theorem depends on definitions:  df-bi 116  df-3an 970  df-tru 1346  df-nf 1449  df-sb 1751  df-clab 2152  df-cleq 2158  df-clel 2161  df-nfc 2297  df-rex 2450  df-v 2728  df-sbc 2952  df-csb 3046  df-un 3120  df-sn 3582  df-pr 3583  df-op 3585  df-uni 3790  df-br 3983  df-iota 5153  df-fv 5196
This theorem is referenced by:  ixpsnval  6667
  Copyright terms: Public domain W3C validator